Advertisement

Fradkin-Bacry-Ruegg-Souriau vector in kappa-deformed space-time

  • Partha GuhaEmail author
  • E. Harikumar
  • N. S. Zuhair
Regular Article

Abstract

We study the presence of an additional symmetry of a generic central potential in the κ space-time. An explicit construction of Fradkin, Bacry, Ruegg and Souriau (FBRS) for a central potential is carried out and the piecewise conserved nature of the vector is established. We also extend the study to Kepler systems with a drag term, particularly the Gorringe-Leach equation is generalized to the κ-deformed space. The possibility of mapping a Gorringe-Leach equation to an equation without drag term is exploited associating a similar conserved vector to the system with a drag term. An extension of the duality between two classes of central potential is introduced in the κ-deformed space and is used to investigate the duality existing between two classes of Gorringe-Leach equations. All the results obtained can be retraced to the correct commutative limit as we let a → 0.

Keywords

Deformation Parameter Dissipative System Central Potential Power Potential Kepler Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Jauch, E.L. Hill, Phys. Rev. 57, 641 (1940).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Fradkin, Am. J. Phys. 33, 207 (1965).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Mukunda, Phys. Rev. 155, 1383 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    H. Bacry, H. Ruegg, J.M. Souriau, Commun. Math. Phys. 3, 323 (1966).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    D.M. Fradkin, Prog. Theor. Phys. 37, 798 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    L.Gy. Feher, P.A. Horvathy, Phys. Lett. B. 183, 182 (1987).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V.B. Sereebrennikov, A.E. Shabad, Theor. Math. Phys. 8, 644 (1971).CrossRefGoogle Scholar
  8. 8.
    L.H. Buch, H.H. Denman, Am. J. Phys. 43, 1046 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    A. Holas, N.H. March, J. Phys. A 23, 735 (1990).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Grandati, A. Berard, H. Mohrbach, Cent. Eur. J. Phys. 9, 88 (2011).Google Scholar
  11. 11.
    A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, Commun. Math. Phys. 290, 1033 (2009).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Peres, J. Phys. A: Math. Gen. 12, 1711 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    T. Yoshida, Eur. J. Phys. 8, 258 (1987).CrossRefGoogle Scholar
  14. 14.
    Y. Grandati, A. Berard, H. Mohrbach, Celest. Mech. Dyn. Astr. 106, 109 (2010).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    V. Galikova, S. Kovacik, P. Presnajder, J. Math. Phys. 54, 122106 (2013).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    V. Galikova, P. Presnajder, Coulomb problem in NC quantum mechanics: Exact solution and non-perturbative aspects, arXiv:1302.4623.
  17. 17.
    K. Nozari, S. Akhshabi, N. Sadeghnezhad, Acta Phys. Pol. B 39, 2867 (2008).ADSMathSciNetGoogle Scholar
  18. 18.
    I. Arraut, D. Batic, M. Nowakowski, J. Math. Phys. 51, 022503 (2010).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class. Quantum Grav. 21, 3095 (2004).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. D 12, 299 (2003).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Kovacevic, S. Meljanac, J. Phys. A: Math. Theor. 45, 135208 (2012).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.M. Romero, J.A. Santiago, J.D. Vergara, Phys. Lett. A 310, 9 (2003).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J.M. Romero, J.D. Vergara, Mod. Phys. Lett. A 18, 1673 (2003).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E. Harikumar, A.K. Kapoor, Mod. Phys. Lett. A 25, 2991 (2010).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    E. Harikumar, T. Juric, S. Meljanac, Phys. Rev. D 84, 085020 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    K.S. Gupta, E. Harikumar, T. Juric, S. Meljanac, A. Samsarov, Adv. High Energy Phys. 2014, 139172 (2014).CrossRefGoogle Scholar
  28. 28.
    E. Harikumar, T. Juric, S. Meljanac, Phys. Rev. D 86, 045002 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    P. Guha, E. Harikumar, N.S. Zuhair, Int. J. Mod. Phys. A 29, 1450187 (2014).MathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Grandati, A. Berard, H. Mohrbach, Celest. Mech. Dyn. Astron. 103, 133 (2009).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.S.N. Bose National Centre for Basic SciencesSalt Lake KolkataIndia
  2. 2.School of PhysicsUniversity of Hyderabad, Central University P OHyderabadIndia

Personalised recommendations