Acoustic investigation of the aperture dynamics of an elastic membrane closing an overpressurized cylindrical cavity

  • Claudia Sánchez
  • Valérie Vidal
  • Francisco Melo
Regular Article


We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.


Acoustic Emission Acoustic Signal Elastic Membrane Rupture Time Membrane Rupture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.E. Speil, J. Geophys. Res. 97, 11443 (1992).CrossRefADSGoogle Scholar
  2. 2.
    G.B. Deane, J. Acoust. Soc. Am. 133, 69 (2013).CrossRefADSGoogle Scholar
  3. 3.
    D.T. Deihl, F.R. Carlson, Am. J. Phys. 36, 441 (1968).CrossRefADSGoogle Scholar
  4. 4.
    J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, UK, 1978) p. 504.Google Scholar
  5. 5.
    M.R. James, S.J. Lane, B. Chouet, J.S. Gilbert, J. Volcanol. Geotherm. Res. 129, 61 (2004).CrossRefADSGoogle Scholar
  6. 6.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vols. I and II (Wiley, New York, 1987).Google Scholar
  7. 7.
    R.P. Chhabra, Bubbles, Drops and Particles in non-Newtonian Fluids, 2nd edition, Chemical Industries (Taylor & Francis, London, 2007) Series No. 113.Google Scholar
  8. 8.
    T. Kobayashi, A. Namiki, I. Sumita, J. Geophys. Res. 115, B10201 (2010).CrossRefADSGoogle Scholar
  9. 9.
    V. Vidal, J.-C. Géminard, T. Divoux, F. Melo, Eur. Phys. J. B 54, 321 (2006).CrossRefADSGoogle Scholar
  10. 10.
    T. Divoux, V. Vidal, F. Melo, J.-C. Géminard, Phys. Rev. E 77, 056310 (2008).CrossRefADSGoogle Scholar
  11. 11.
    V. Vidal, M. Ripepe, T. Divoux, D. Legrand, J.-C. Géminard, F. Melo, Geophys. Res. Lett. 37, L07302 (2010).CrossRefADSGoogle Scholar
  12. 12.
    C. Sánchez, B. Álvarez, F. Melo, V. Vidal, Geophys. Res. Lett. 41, 6705 (2014).CrossRefADSGoogle Scholar
  13. 13.
    A. Yokoo, M. Iguchi, J. Volcanol. Geotherm. Res. 196, 287 (2010).CrossRefADSGoogle Scholar
  14. 14.
    J.B. Johnson, M. Ripepe, J. Volcanol. Geotherm. Res. 206, 61 (2011).CrossRefADSGoogle Scholar
  15. 15.
    E. Blackburn, L. Wilson, R. Sparks, J. Geol. Soc. London 132, 429 (1976).CrossRefGoogle Scholar
  16. 16.
    S. Vergniolle, G. Brandeis, J. Geophys. Res. 101, 20433 (1996).CrossRefADSGoogle Scholar
  17. 17.
    M. Hagerty, S. Schwartz, M. Garcés, M. Protti, J. Volcanol. Geotherm. Res. 101, 27 (2000).CrossRefADSGoogle Scholar
  18. 18.
    S. Vergniolle, M. Boichu, J. Caplan-Auerbach, J. Volcanol. Geotherm. Res. 137, 109 (2004).CrossRefADSGoogle Scholar
  19. 19.
    H.M. Gonnermann, M. Manga, Annu. Rev. Fluid Mech. 39, 321 (2007).MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    J. Taddeucci, M.A. Alatorre-Ibargüengoitia, M. Moroni, L. Tornetta, A. Capponi, P. Scarlato, D.B. Dingwell, D. De Rita, Geophys. Res. Lett. 39, L16306 (2012).ADSGoogle Scholar
  21. 21.
    L. Mullins, Rubber Chem. Technol. 42, 339 (1947).CrossRefGoogle Scholar
  22. 22.
    J. Diani, B. Fayolle, P. Gilormini, Eur. Polym. J. 45, 601 (2009).CrossRefGoogle Scholar
  23. 23.
    J. Niemczura, K. Ravi-Chandar, J. Mech. Phys. Solids 59, 457 (2011).CrossRefADSzbMATHGoogle Scholar
  24. 24.
    H. Levine, J. Schwinger, Phys. Rev. Lett. 73, 383 (1948).MathSciNetADSzbMATHGoogle Scholar
  25. 25.
    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 3rd edition (J. Wiley & Sons, Inc., New York, 1982).Google Scholar
  26. 26.
    A. Pierce, Acoustics - An Introduction to Its Physical Principles and Applications (ASA, New York, 1989).Google Scholar
  27. 27.
    J. Kemp, Theoretical and experimental study of wave propagation in brass musical instruments PhD thesis, University of Edinburgh (2002).Google Scholar
  28. 28.
    R. Vermorel, N. Vandenberghe, E. Villermaux, Proc. R. Soc. A 463, 641 (2006).MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    P. Oswald, Rhéophysique, Ou comment coule la matière (Belin, Collection Echelles, 2005).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claudia Sánchez
    • 1
  • Valérie Vidal
    • 2
  • Francisco Melo
    • 1
  1. 1.Laboratorio de Física No Lineal, Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Laboratoire de PhysiqueUniversité de Lyon, Ecole Normale Supérieure de Lyon - CNRSLyon cedex 07France

Personalised recommendations