Stagnation point flow and heat transfer over a stretching/shrinking sheet in a viscoelastic fluid with convective boundary condition and partial slip velocity

  • Muhammad Khairul Anuar Mohamed
  • Mohd Zuki Salleh
  • Anuar Ishak
  • Ioan Pop
Regular Article


In this study, the mathematical modeling for the stagnation point flow and heat transfer over a stretching/shrinking surface in a viscoelastic fluid (Walter’s liquid-B model) with partial slip velocity is considered. The non-linear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation before being solved numerically using the Runge-Kutta-Fehlberg method. Numerical solutions are obtained for the surface temperature, temperature gradient at the surface and the skin friction coefficient. The features of the flow and heat transfer characteristics for various values of Prandtl number, the dimensionless viscoelastic parameter, stretching parameter, constant velocity slip parameter and conjugate parameter are analyzed and discussed. It is found that the heat transfer rate is higher for Walter’s fluid compared to the classical viscous fluid and the presence of the velocity slip reduces the effects of the viscoelastic parameter on the skin friction coefficient.


  1. 1.
    M. Turkyilmazoglu, Int. J. Therm. Sci. 50, 2264 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Crane, Z. Angew. Math. Phys. 21, 645 (1970)CrossRefGoogle Scholar
  3. 3.
    P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977)CrossRefGoogle Scholar
  4. 4.
    C.K. Chen, M. Char, J. Math. Anal. Appl. 135, 568 (1988)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Dandapat, A. Gupta, Int. J. Non-Linear Mech. 24, 215 (1989)MATHCrossRefGoogle Scholar
  6. 6.
    S. Bhattacharyya, A. Pal, A.S. Gupta, Heat Mass Transfer 34, 41 (1998)CrossRefADSGoogle Scholar
  7. 7.
    R. Cortell, Int. J. Non-Linear Mech. 41, 78 (2006)MATHCrossRefADSGoogle Scholar
  8. 8.
    P. Ariel, T. Hayat, S. Asghar, Acta Mech. 187, 29 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    K. Bhattacharyya, M. Uddin, G. Layek, W.A. Pk, Bangladesh J. Sci. Ind. Res. 46, 451 (2011)Google Scholar
  10. 10.
    A.V. Luikov, V.A. Aleksashenko, A.A. Aleksashenko, Int. J. Heat Mass Transfer 14, 1047 (1971)MATHCrossRefGoogle Scholar
  11. 11.
    R.C. Bataller, Appl. Math. Comput. 206, 832 (2008)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Aziz, Commun. Nonlinear Sci. Numer. Simulat. 14, 1064 (2009)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    A. Ishak, Appl. Math. Comput. 217, 837 (2010)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Magyari, Commun. Nonlinear Sci. Numer. Simulat. 16, 599 (2010)CrossRefADSGoogle Scholar
  15. 15.
    S. Yao, T. Fang, Y. Zhong, Commun. Nonlinear Sci. Numer. Simulat. 16, 752 (2011)MATHCrossRefADSGoogle Scholar
  16. 16.
    M.K.A. Mohamed, M.Z. Salleh, R. Nazar, A. Ishak, Bound. Value Probl. 2013, 1 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    P.G. Siddheshwar, U.S. Mahabaleswar, Int. J. Non-Linear Mech. 40, 807 (2005)MATHCrossRefADSGoogle Scholar
  18. 18.
    T. Hayat, Z. Iqbal, M. Mustafa, J. Mech. 28, 209 (2012)CrossRefGoogle Scholar
  19. 19.
    E.R.G. Eckert, VDI Forsch. 461 (1942)Google Scholar
  20. 20.
    M.Z. Salleh, R. Nazar, I. Pop, Chem. Eng. Commun. 196, 987 (2009)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Muhammad Khairul Anuar Mohamed
    • 1
  • Mohd Zuki Salleh
    • 1
  • Anuar Ishak
    • 2
  • Ioan Pop
    • 3
  1. 1.Applied & Industrial Mathematics Research Group, Faculty of Industrial Sciences & TechnologyUniversiti Malaysia PahangUMP Kuantan, PahangMalaysia
  2. 2.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaUKM Bangi, SelangorMalaysia
  3. 3.Department of MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations