Advertisement

Is the Universe logotropic?

  • Pierre-Henri Chavanis
Regular Article

Abstract

We consider the possibility that the universe is made of a single dark fluid described by a logotropic equation of state P = A ln(ρ*, where ρ is the rest-mass density, ρ * is a reference density, and A is the logotropic temperature. The energy density ε is the sum of two terms: a rest-mass energy term ρ c 2 that mimics dark matter and an internal energy term u(ρ) = −P(ρ) − A that mimics dark energy. This decomposition leads to a natural, and physical, unification of dark matter and dark energy, and elucidates their mysterious nature. In the early universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃ 0, εa −3. In the late universe, the internal energy dominates and the dark fluid behaves as dark energy (P ∼ −ε, ε ∝ ln a. The logotropic model depends on a single parameter B = A /ρ Λ c 2 (dimensionless logotropic temperature), where ρ Λ = 6.72 × 10−24 g m−3 is the cosmological density. For B = 0, we recover the ΛCDM model with a different justification. For B > 0, we can describe deviations from the ΛCDM model. Using cosmological constraints, we find that 0 ≤ B ≤ 0.09425. We consider the possibility that dark matter halos are described by the same logotropic equation of state. When B > 0, pressure gradients prevent gravitational collapse and provide halo density cores instead of cuspy density profiles, in agreement with the observations. The universal rotation curve of logotropic dark matter halos is consistent with the observational Burkert profile (Burkert, Astrophys. J. 447, L25 (1995)) up to the halo radius. It decreases as r −1 at large distances, similarly to the profile of dark matter halos close to the core radius (Burkert, arXiv:1501.06604). Interestingly, if we assume that all the dark matter halos have the same logotropic temperature B, we find that their surface density Σ 0 = ρ0 r h is constant. This result is in agreement with the observations (Donato et al., Mon. Not. R. Astron. Soc. 397, 1169 (2009)) where it is found that Σ 0 = 141 M /pc2 for dark matter halos differing by several orders of magnitude in size. Using this observational result, we obtain B = 3.53 × 10−3. Then, we show that the mass enclosed within a sphere of fixed radius r u = 300 pc has the same value M 300 1.93 × 107 M for all the dwarf halos, in agreement with the observations (Strigari et al., Nature 454, 1096 (2008)). Finally, assuming that ρ * = ρ P , where ρ P = 5.16 × 1099 g m−3 is the Planck density, we predict B = 3.53 × 10−3, in perfect agreement with the value obtained from the observations. We approximately have B ≃ 1/ln(ρ P /ρ Λ ∼ 1/[123ln(10)], where 123 is the famous number occurring in the ratio ρ P /ρ Λ ∼ 10123 between the Planck density and the cosmological density. This value of B is sufficiently low to satisfy the cosmological bound 0 ≤ B ≤ 0.09425 and sufficiently large to differ from CDM (B = 0 and avoid density cusps in dark matter halos. It leads to a Jeans length at the beginning of the matter era of the order of Λ J =40.4 pc which is consistent with the minimum size of dark matter halos observed in the universe. Therefore, a logotropic equation of state is a good candidate to account both for galactic and cosmological observations. This may be a hint that dark matter and dark energy are the manifestation of a single dark fluid. If we assume that the dark fluid is made of a self-interacting scalar field, representing for example Bose-Einstein condensates, we find that the logotropic equation of state arises from the Gross-Pitaevskii equation with an inverted quadratic potential, or from the Klein-Gordon equation with a logarithmic potential. We also relate the logotropic equation of state to Tsallis generalized thermodynamics and to the Cardassian model motivated by the existence of extra-dimensions.

Keywords

Dark Matter Dark Energy Dark Matter Halo Late Universe Polytropic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. von Seeliger, Münch. Ber. 26, 373 (1896).Google Scholar
  2. 2.
    C. Neumann, Allgemeine Untersuchungen über das Newtonsche Prinzip der Fernwirkungen (Leipzig, 1896).Google Scholar
  3. 3.
    J.D. Norton, in The Expanding Worlds of General Relativity, edited by H. Goenner, J. Renn, J. Ritter, T. Sauer (Birkhäuser, Boston, 1999) p. 271.Google Scholar
  4. 4.
    A. Einstein, Sitz. König. Preu. Akad. Wiss. 1, 142 (1917).Google Scholar
  5. 5.
    G.E. Lemaître, in The Cosmological Constant, edited by P.A. Schlipp (Open Court, La Salle, Illinois, 1997).Google Scholar
  6. 6.
    A.S. Eddington, The Mathematical Theory of Relativity (Cambridge Univ., 1924).Google Scholar
  7. 7.
    A. Trautman, in Lectures on General Relativity, edited by A. Trautman, F.A.E. Pirani, H. Bondi (Prentice-Hall, Englewood Cliffs, NJ, 1965) p. 230.Google Scholar
  8. 8.
    E.A. Spiegel, Gravitational screening, in A Festschrifft for Engelbert Schucking edited by A. Harvey (Springer-Verlag, Heidelberg, 1998) astro-ph/9801014.Google Scholar
  9. 9.
    M. Kiessling, Adv. Appl. Math. 31, 132 (2003) see also [astro-ph/9910247].MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. Friedmann, Z. Phys. 10, 377 (1922).ADSzbMATHGoogle Scholar
  11. 11.
    A. Friedmann, Z. Phys. 21, 326 (1924).MathSciNetADSzbMATHGoogle Scholar
  12. 12.
    G. Lemaître, Ann. Soc. Sci. Bruxelle 47, 49 (1927).Google Scholar
  13. 13.
    G. Lemaître, Mon. Not. R. Astron. Soc. 91, 483 (1931).ADSzbMATHGoogle Scholar
  14. 14.
    E. Hubble, Proc. Natl. Acad. Sci. 15, 168 (1929).ADSzbMATHGoogle Scholar
  15. 15.
    A. Einstein, quoted by G. Gamow, in My World Line (Viking, New York, 1970) p. 44.Google Scholar
  16. 16.
    A. Einstein, W. de Sitter, Proc. Natl. Acad. Sci. 18, 213 (1932).ADSGoogle Scholar
  17. 17.
    A.G. Riess et al., Astron. J. 116, 1009 (1998).ADSGoogle Scholar
  18. 18.
    S. Perlmutter et al., Astronphys. J. 517, 565 (1999).ADSGoogle Scholar
  19. 19.
    P. de Bernardis et al., Nature 404, 995 (2000).Google Scholar
  20. 20.
    S. Hanany et al., Astronphys. J. 545, L5 (2000).ADSGoogle Scholar
  21. 21.
    W. de Sitter, Proc. Akad. Wetensch. Amsterdam 19, 1217 (1917).ADSGoogle Scholar
  22. 22.
    W. de Sitter, Mon. Not. R. Astron. Soc. 78, 3 (1917).ADSGoogle Scholar
  23. 23.
    G. Lemaître, J. Math. Phys. (M.I.T.) 4, 188 (1925).zbMATHGoogle Scholar
  24. 24.
    G. Lemaître, Proc. Natl. Acad. Sci. 20, 12 (1934).ADSGoogle Scholar
  25. 25.
    A.D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967).ADSGoogle Scholar
  26. 26.
    Ya.B. Zel'dovich, Sov. Phys. Uspek. 11, 381 (1968).ADSzbMATHGoogle Scholar
  27. 27.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).MathSciNetADSzbMATHGoogle Scholar
  28. 28.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).MathSciNetADSzbMATHGoogle Scholar
  29. 29.
    B. Ratra, J. Peebles, Phys. Rev. D 37, 321 (1988).Google Scholar
  30. 30.
    A.A. Starobinski, JETP Lett. 68, 757 (1998).ADSGoogle Scholar
  31. 31.
    R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).ADSGoogle Scholar
  32. 32.
    Ph. Brax, J. Martin, Phys. Lett. B 468, 40 (1999).MathSciNetADSzbMATHGoogle Scholar
  33. 33.
    A. Albrecht, C. Skordis, Phys. Rev. Lett. 84, 2076 (2000).ADSGoogle Scholar
  34. 34.
    T. Barreiro, E.J. Copeland, N.J. Nunes, Phys. Rev. D 61, 127301 (2000).ADSGoogle Scholar
  35. 35.
    L.A. Ureña-López, T. Matos, Phys. Rev. D 62, 081302(R) (2000).ADSGoogle Scholar
  36. 36.
    P. Brax, J. Martin, Phys. Rev. D 61, 103502 (2000).ADSGoogle Scholar
  37. 37.
    T.D. Saini, S. Raychaudhury, V. Sahni, A.A. Starobinsky, Phys. Rev. Lett. 85, 1162 (2000).ADSGoogle Scholar
  38. 38.
    V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).ADSGoogle Scholar
  39. 39.
    V. Sahni, Class. Quantum Grav. 19, 3435 (2002).MathSciNetADSzbMATHGoogle Scholar
  40. 40.
    M. Pavlov, C. Rubano, M. Sazhin, P. Scudellaro, Astrophys. J. 566, 619 (2002).ADSGoogle Scholar
  41. 41.
    V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003).ADSGoogle Scholar
  42. 42.
    F. Zwicky, Helv. Phys. Acta 6, 110 (1933).ADSGoogle Scholar
  43. 43.
    V.C. Rubin, W.K. Ford, N. Thonnard, Astrophys. J. 238, 471 (1980).ADSGoogle Scholar
  44. 44.
    M. Persic, P. Salucci, F. Stel, Mon. Not. R. Astron. Soc. 281, 27 (1996).ADSGoogle Scholar
  45. 45.
    A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001).ADSzbMATHGoogle Scholar
  46. 46.
    H.B. Sandvik, M. Tegmark, M. Zaldarriaga, I. Waga, Phys. Rev. D 69, 123524 (2004).ADSGoogle Scholar
  47. 47.
    Z.H. Zhu, Astron. Astrophys. 423, 421 (2004).ADSzbMATHGoogle Scholar
  48. 48.
    N. Bilic, G.B. Tuper, R. Viollier, Phys. Lett. B 535, 17 (2002).ADSzbMATHGoogle Scholar
  49. 49.
    J.S. Fabris, S.V. Goncalves, P.E. de Souza, Gen. Relativ. Gravit. 34, 53 (2002).Google Scholar
  50. 50.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002).ADSGoogle Scholar
  51. 51.
    H.B. Benaoum, arXiv:0205140 (2002).Google Scholar
  52. 52.
    V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003).ADSGoogle Scholar
  53. 53.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519 (2004).ADSGoogle Scholar
  54. 54.
    U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004).MathSciNetADSzbMATHGoogle Scholar
  55. 55.
    P.H. Chavanis, Eur. Phys. J. Plus 129, 38 (2014).Google Scholar
  56. 56.
    P.H. Chavanis, Eur. Phys. J. Plus 129, 222 (2014).Google Scholar
  57. 57.
    P.H. Chavanis, arXiv:1208.1185.
  58. 58.
    P.H. Chavanis, AIP Conf. Proc. 1548, 75 (2013).ADSGoogle Scholar
  59. 59.
    J.F. Navarro, C.S. Frenk, S.D.M. White, Mon. Not. R. Astron. Soc. 462, 563 (1996).ADSGoogle Scholar
  60. 60.
    A. Burkert, Astrophys. J. 447, L25 (1995).ADSGoogle Scholar
  61. 61.
    B. Moore, T. Quinn, F. Governato, J. Stadel, G. Lake, Mon. Not. R. Astron. Soc. 310, 1147 (1999).ADSGoogle Scholar
  62. 62.
    P. Salucci, A. Burkert, Astrophys. J. 537, L9 (2000).ADSGoogle Scholar
  63. 63.
    C. Firmani et al., Mon. Not. R. Astron. Soc. 321, 713 (2001).ADSGoogle Scholar
  64. 64.
    W.J.G. De Blok et al., Mon. Not. R. Astron. Soc. 340, 657 (2003).ADSGoogle Scholar
  65. 65.
    G. Gentile et al., Astrophys. J. 634, L145 (2005).ADSGoogle Scholar
  66. 66.
    G. Battaglia et al., Astrophys. J. 681, L13 (2008).ADSGoogle Scholar
  67. 67.
    S.H. Oh et al., Astron. J. 141, 193 (2011).ADSGoogle Scholar
  68. 68.
    R.F. Tooper, Astrophys. J. 140, 434 (1964).MathSciNetADSzbMATHGoogle Scholar
  69. 69.
    R.F. Tooper, Astrophys. J. 142, 1541 (1965).MathSciNetADSGoogle Scholar
  70. 70.
    P.H. Chavanis, arXiv:1412.0005.
  71. 71.
    P.H. Chavanis, arXiv:1412.0743.
  72. 72.
    K. Kleidis, N.K. Spyrou, Astron. Astrophys. 576, A23 (2015).ADSGoogle Scholar
  73. 73.
    A.H. Guth, Phys. Rev. D 23, 347 (1981).ADSGoogle Scholar
  74. 74.
    A.D. Linde, Phys. Lett. B 108, 389 (1982).MathSciNetADSGoogle Scholar
  75. 75.
    A. Albrecht, P.J. Steinhardt, M.S. Turner, F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982).ADSGoogle Scholar
  76. 76.
    A. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990).Google Scholar
  77. 77.
    P.H. Chavanis, J. Grav. 2013, 682451 (2013).Google Scholar
  78. 78.
    P.H. Chavanis, arXiv:1309.5784.
  79. 79.
    S. Asadzadeh, Z. Safari, K. Karami, A. Abdolmaleki, Int. J. Theor. Phys. 53, 1248 (2014).MathSciNetzbMATHGoogle Scholar
  80. 80.
    D. McLaughlin, R. Pudritz, Astrophys. J. 469, 194 (1996).ADSGoogle Scholar
  81. 81.
    P.H. Chavanis, C. Sire, Physica A 375, 140 (2007).ADSGoogle Scholar
  82. 82.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009).Google Scholar
  83. 83.
    A. Burkert, arXiv:1501.06604.
  84. 84.
    J. Kormendy, K.C. Freeman, in Dark Matter in Galaxies. Proceedings of the IAU Symposium 220, edited by S.D. Ryder, D.J. Pisano, M.A. Walker, K.C. Freeman (ASP, 2004) p. 377.Google Scholar
  85. 85.
    M. Spano, M. Marcelin, P. Amram, C. Carignan, B. Epinat, O. Hernandez, Mon. Not. R. Astron. Soc. 383, 297 (2008).ADSGoogle Scholar
  86. 86.
    F. Donato et al., Mon. Not. R. Astron. Soc. 397, 1169 (2009).ADSGoogle Scholar
  87. 87.
    L.E. Strigari et al., Nature 454, 1096 (2008).ADSGoogle Scholar
  88. 88.
    J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, NJ, 1987).Google Scholar
  89. 89.
    S. Weinberg, Gravitation and Cosmology (John Wiley, 2002).Google Scholar
  90. 90.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002).ADSGoogle Scholar
  91. 91.
    R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).ADSGoogle Scholar
  92. 92.
    B. McInnes, J. High Energy Phys. 8, 29 (2002).MathSciNetADSGoogle Scholar
  93. 93.
    S.M. Carroll, M. Hoffman, M. Trodden, Phys. Rev. D 68, 023509 (2003).ADSGoogle Scholar
  94. 94.
    P. Singh, M. Sami, N. Dadhich, Phys. Rev. D 68, 023522 (2003).ADSGoogle Scholar
  95. 95.
    J.M. Cline, S. Jeon, G.D. Moore, Phys. Rev. D 70, 043543 (2004).ADSGoogle Scholar
  96. 96.
    M. Sami, A. Toporensky, Mod. Phys. Lett. A 19, 1509 (2004).ADSGoogle Scholar
  97. 97.
    S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 70, 123529 (2004).ADSGoogle Scholar
  98. 98.
    E. Babichev, V. Dokuchaev, Yu. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004).ADSGoogle Scholar
  99. 99.
    P.F. González-Días, C.L. Sigüenza, Phys. Lett. B 589, 78 (2004).ADSGoogle Scholar
  100. 100.
    P.F. González-Días, C.L. Sigüenza, Nucl. Phys. B 697, 363 (2004).ADSGoogle Scholar
  101. 101.
    S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004).MathSciNetADSGoogle Scholar
  102. 102.
    S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005).ADSGoogle Scholar
  103. 103.
    H. Stefancić, Phys. Rev. D 71, 084024 (2005).ADSGoogle Scholar
  104. 104.
    M. Bouhmadi-López, P.F. Gonzalez-Díaz, P. Martín-Moruno, Phys. Lett. B 659, 1 (2008).ADSzbMATHGoogle Scholar
  105. 105.
    H. García-Compeán, G. García-Jiménez, O. Obregón, C. Ramírez, JCAP 7, 16 (2008).ADSGoogle Scholar
  106. 106.
    L. Fernández-Jambrina, Phys. Rev. D 82, 124004 (2010).ADSGoogle Scholar
  107. 107.
    P.H. Frampton, K.J. Ludwick, R.J. Scherrer, Phys. Rev. D 84, 063003 (2011).ADSGoogle Scholar
  108. 108.
    S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904).Google Scholar
  109. 109.
    P. Steinhardt, in Critical Problems in Physics, edited by V.L. Fitch, D.R. Marlow (Princeton University Press, Princeton, NJ, 1997).Google Scholar
  110. 110.
    P.O. Kazinski, arXiv:1501.05777.
  111. 111.
    Ya.B. Zel'dovich, Mon. Not. R. Astron. Soc. 160, 1 (1972).ADSGoogle Scholar
  112. 112.
    Ya.B. Zel'dovich, Sov. Phys. JETP 14, 1143 (1962).zbMATHGoogle Scholar
  113. 113.
    K. Freese, M. Lewis, Phys. Lett. B 540, 1 (2002).MathSciNetADSzbMATHGoogle Scholar
  114. 114.
    J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005).ADSGoogle Scholar
  115. 115.
    E. Gaztanaga, A. Cabre, L. Hui, Mon. Not. R. Astron. Soc. 399, 1663 (2009).ADSGoogle Scholar
  116. 116.
    J.A. Peacock, Cosmological Physics (Cambridge University Press, Cambridge, 1999).Google Scholar
  117. 117.
    J.V. Narlikar, Introduction to Cosmology (Boston, Jones and Bartlett Publishers Inc., 1983).Google Scholar
  118. 118.
    N. Suzuki et al., Astrophys. J. 746, 85 (2012).ADSGoogle Scholar
  119. 119.
    G. Efstathiou, J.R. Bond, Mon. Not. R. Astron. Soc. 30, 75 (1999).ADSGoogle Scholar
  120. 120.
    WMAP Collaboration (C.L. Bennett et al.), Astrophys. J. Suppl. 208, 20 (2013).Google Scholar
  121. 121.
    Y. Wang, S. Wang, Phys. Rev. D 88, 043522 (2013).ADSGoogle Scholar
  122. 122.
    S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, 1958).Google Scholar
  123. 123.
    I.R. King, Astron. J. 70, 376 (1965).ADSGoogle Scholar
  124. 124.
    P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 91, 063531 (2015).ADSGoogle Scholar
  125. 125.
    H.J. de Vega, P. Salucci, N.G. Sanchez, Mon. Not. R. Astron. Soc. 442, 2717 (2014).ADSGoogle Scholar
  126. 126.
    C. Destri, H.J. de Vega, N.G. Sanchez, New Astron. 22, 39 (2013).ADSGoogle Scholar
  127. 127.
    R. Giostri et al., JCAP 03, 027 (2012).ADSzbMATHGoogle Scholar
  128. 128.
    H. Bondi, Proc. R. Soc. London A 282, 303 (1964).MathSciNetADSzbMATHGoogle Scholar
  129. 129.
    B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitation Theory and Gravitational Collapse (Chicago, University of Chicago Press, 1965).Google Scholar
  130. 130.
    P.H. Chavanis, Astron. Astrophys. 451, 109 (2006).ADSGoogle Scholar
  131. 131.
    P.H. Chavanis, Eur. Phys. J. B 78, 139 (2010).MathSciNetADSzbMATHGoogle Scholar
  132. 132.
    P.H. Chavanis, Astron. Astrophys. 483, 673 (2008).ADSzbMATHGoogle Scholar
  133. 133.
    A. Suárez, P.H. Chavanis, arXiv:1503.07437.
  134. 134.
    P.H. Chavanis, Phys. Rev. D 84, 043531 (2011).MathSciNetADSGoogle Scholar
  135. 135.
    E. Madelung, Z. Phys. 40, 322 (1927).ADSGoogle Scholar
  136. 136.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999).ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueUniversité Paul SabatierToulouseFrance

Personalised recommendations