Advertisement

Status of the crystallography beamlines at the MAX IV Laboratory

  • Derek T. LoganEmail author
  • Roberto Appio
  • Folmer Fredslund
  • Dörthe Haase
  • Francisco Javier Martinez-Casado
  • Jie Nan
  • Alberto Nardella
  • Katarina Norén
  • Kajsa G.V. Sigfridsson
  • Diana Thomas
  • Johan Unge
  • Olivier Balmes
  • Stefan Carlson
  • Thomas Ursby
  • Marjolein M.G.M Thunnissen
Review
  • 155 Downloads
Part of the following topical collections:
  1. Focus Point on Status of third-generation synchrotron crystallography beamlines: An overview

Abstract.

The MAX IV Laboratory in Lund is currently operating two storage rings, the 1.5GeV MAX II and the 700MeV MAX III, as well as constructing the new facility MAX IV, which will house a 1.5GeV and a 3GeV ring. At the MAX II synchrotron there are three hard X-ray beamlines at which crystallography can be performed: I711, I811 and I911. Beamline I711 is mainly used for powder diffraction. I811 is an EXAFS station at which surface XRD can also be carried out. I911 is a beamline with five experimental stations on a single superconducting wiggler source, of which two are currently used for macromolecular crystallography, namely the monochromatic station I911-2 and the tuneable station I911-3, which is equipped with a state-of-the-art goniometer and robotic sample changer. We will give an overview of the capabilities of these beamlines, focusing particularly on the macromolecular crystallography beamline I911 and some recent scientific highlights produced there. We will also give a brief overview of new beamlines for crystallography that are under construction or planned for the MAX IV facility.

Keywords

Storage Ring Macromolecular Crystallography Crystallography Experiment Undulator Beamline Experimental Hutch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Eriksson, L.J. Lindgren, H. Tarawneh, AIP Conf. Proc. 705, 157 (2004)CrossRefADSGoogle Scholar
  2. 2.
    M.M.G.M. Thunnissen et al., J. Phys. Conf. Ser. 425, 072012 (2013) DOI:10.1088/1742-6596/425/7/072012 CrossRefADSGoogle Scholar
  3. 3.
    A. Andersson et al., Nucl. Instrum. Methods A 343, 644 (1994) DOI: 10.1016/0168-9002(94)90248-8 CrossRefADSGoogle Scholar
  4. 4.
    T. Ursby et al., J. Synchrotron Radiat. 20, 648 (2013) DOI:10.1107/S0909049513011734 CrossRefGoogle Scholar
  5. 5.
    Y. Cerenius et al., J. Synchrotron Radiat. 7, 203 (2000) DOI:10.1107/S0909049500005331 CrossRefGoogle Scholar
  6. 6.
    S. Carlson et al., J. Synchrotron Radiat. 13, 359 (2006) DOI:10.1107/S0909049506025611 CrossRefGoogle Scholar
  7. 7.
    E. Wallén, G. LeBlanc, AIP Conf. Proc. 705, 219 (2004)CrossRefADSGoogle Scholar
  8. 8.
    C.B. Mammen et al., AIP Conf. Proc. 705, 808 (2004)CrossRefADSGoogle Scholar
  9. 9.
    M. Eriksson et al., J. Phys. Conf. Ser. 425, 072008 (2013) DOI:10.1088/1742-6596/425/7/072008 CrossRefADSGoogle Scholar
  10. 10.
    U. Johansson, U. Vogt, A. Mikkelsen, Proc. SPIE 8851, 88510l (2013) DOI:10.1117/12.2026609 CrossRefADSGoogle Scholar
  11. 11.
    A. Perrakis et al., Acta Crystallogr. D Biol. Crystallogr. 55, 1765 (1999)CrossRefGoogle Scholar
  12. 12.
    L. Jacquamet et al., J. Synchrotron Radiat. 16, 14 (2009) DOI:10.1107/S0909049508031105 CrossRefGoogle Scholar
  13. 13.
    F. Cipriani et al., Acta Crystallogr. D Biol. Crystallogr. 62, 1251 (2006) DOI:10.1107/S0907444906030587 CrossRefGoogle Scholar
  14. 14.
    J. Gabadinho et al., J. Synchrotron Radiat. 17, 700 (2010) DOI:10.1107/S0909049510020005 CrossRefGoogle Scholar
  15. 15.
    G.P. Bourenkov, A.N. Popov, Acta Crystallogr. D Biol. Crystallogr. 62, 58 (2006) DOI:10.1107/S0907444905033998 CrossRefGoogle Scholar
  16. 16.
    K.S. Paithankar, E.F. Garman, Acta Crystallogr. D Biol. Crystallogr. 66, 381 (2010) DOI:10.1107/S0907444910006724 CrossRefGoogle Scholar
  17. 17.
    M.F. Incardona et al., J. Synchrotron Radiat. 16, 872 (2009) DOI:10.1107/S0909049509036681 CrossRefGoogle Scholar
  18. 18.
    G. Winter, J. Appl. Crystallogr. 43, 186 (2010) DOI:10.1107/S0021889809045701 CrossRefGoogle Scholar
  19. 19.
    S. Delageniere et al., Bioinformatics 27, 3186 (2011) DOI:10.1093/bioinformatics/btr535 CrossRefGoogle Scholar
  20. 20.
    A.G.W. Leslie, in Evolving Methods for Macromolecular Crystallography, edited by R.J. Read, J.L. Sussman (Springer, 2007) pp. 41Google Scholar
  21. 21.
    W. Kabsch, Acta Crystallogr. D Biol. Crystallogr. 66, 125 (2010)CrossRefGoogle Scholar
  22. 22.
    T. Pape, T.R. Schneider, J. Appl. Crystallogr. 37, 843 (2004) DOI:10.1107/S0021889804018047 CrossRefGoogle Scholar
  23. 23.
    M.D. Winn et al., Acta Crystallogr. D Biol. Crystallogr. 67, 235 (2011) DOI:10.1107/S0907444910045749 CrossRefGoogle Scholar
  24. 24.
    G.M. Sheldrick, Acta Crystallogr. A 64, 112 (2008) DOI:10.1107/S0108767307043930 CrossRefADSGoogle Scholar
  25. 25.
    P.D. Adams et al., Acta Crystallogr. D Biol. Crystallogr. 66, 213 (2010) DOI:10.1107/S0907444909052925 CrossRefGoogle Scholar
  26. 26.
    H.M. Berman, Acta Crystallogr. A 64, 88 (2008) DOI:10.1107/S0108767307035623 CrossRefADSGoogle Scholar
  27. 27.
    L. Berg et al., PLoS One 6, e26039 (2011) DOI:10.1371/journal.pone.0026039 CrossRefADSGoogle Scholar
  28. 28.
    E. Artursson et al., Biochem. Pharmacol. 85, 1389 (2013) DOI:10.1016/j.bcp.2013.01.016 CrossRefGoogle Scholar
  29. 29.
    C.D. Andersson et al., J. Med. Chem. 56, 7615 (2013) DOI:10.1021/jm400990p CrossRefGoogle Scholar
  30. 30.
    H. Gad et al., Nature 508, 215 (2014) DOI:10.1038/nature13181 CrossRefADSGoogle Scholar
  31. 31.
    J. Kellosalo et al., Science 337, 473 (2012) DOI:10.1126/science.1222505 CrossRefADSGoogle Scholar
  32. 32.
    A.M. Winther et al., Nature 495, 265 (2013) DOI:10.1038/nature11900 CrossRefADSGoogle Scholar
  33. 33.
    K. Wang et al., Nature 514, 518 (2014) DOI:10.1038/nature13618 CrossRefADSGoogle Scholar
  34. 34.
    K. Petersson et al., EMBO J. 20, 3306 (2001) DOI:10.1093/emboj/20.13.3306 CrossRefGoogle Scholar
  35. 35.
    A. Molgaard et al., Biochem. J. 401, 645 (2007) DOI:10.1042/BJ20061389 CrossRefGoogle Scholar
  36. 36.
    H. Hemmen et al., Langmuir 28, 1678 (2012) DOI:10.1021/La204164q CrossRefGoogle Scholar
  37. 37.
    L.H. Jepsen et al., Dalton Trans. 43, 3095 (2014) DOI:10.1039/C3dt52538d CrossRefGoogle Scholar
  38. 38.
    S. Birgisson et al., Dalton Trans. 43, 15075 (2014)CrossRefGoogle Scholar
  39. 39.
    K. Lasri et al., J. Power Sources 229, 265 (2013) DOI:10.1016/J.Jpowsour.2012.12.031 CrossRefGoogle Scholar
  40. 40.
    O. Ermakova et al., Acta Crystallog. Sec. B Struct. Sci. Cryst. Eng. Mater. 70, 533 (2014) DOI:10.1107/S2052520614010816 CrossRefGoogle Scholar
  41. 41.
    C.G. Frankaer et al., Acta. Crystallogr. D Biol. Crystallogr. 70, 110 (2014) DOI:10.1107/S1399004713029040 CrossRefGoogle Scholar
  42. 42.
    L. Eklund, I. Persson, Dalton Trans. 43, 6315 (2014) DOI:10.1039/c3dt53468e CrossRefGoogle Scholar
  43. 43.
    V. Stankevic et al., Thin Solid Films 540, 194 (2013) DOI:10.1016/J.Tsf.2013.05.127 CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Derek T. Logan
    • 1
    • 2
    Email author
  • Roberto Appio
    • 1
  • Folmer Fredslund
    • 1
  • Dörthe Haase
    • 1
  • Francisco Javier Martinez-Casado
    • 1
  • Jie Nan
    • 1
  • Alberto Nardella
    • 1
  • Katarina Norén
    • 1
  • Kajsa G.V. Sigfridsson
    • 1
  • Diana Thomas
    • 1
  • Johan Unge
    • 1
  • Olivier Balmes
    • 1
  • Stefan Carlson
    • 1
  • Thomas Ursby
    • 1
  • Marjolein M.G.M Thunnissen
    • 1
    • 2
  1. 1.MAX IV LaboratoryLundSweden
  2. 2.Dept. of Biochemistry & Structural BiologyLund UniversityLundSweden

Personalised recommendations