Ablation model for semiconductors and dielectrics under ultrafast laser pulses for solar cells micromachining

  • Alberto Gurizzan
  • Paolo VilloresiEmail author
Regular Article


Ultrafast laser pulses provide a new tool for material processing. The ultrafast regime leads to nonlinear absorption and nonthermal interaction with the target yielding significant advantages in solar cells micromachining over traditional mechanical or Q-switched laser processes: high process speed, high energetic efficiency, reduced heat affected zone (HAZ), high quality and precision of the realized structures. Therefore, a description of the dominant physical processes underlying the ultrafast laser-matter interaction is needed to develop a simplified model able to provide an explanation of the different aspect of the process. This paper provides an overview of the fundamental equations governing the laser-material interaction process in a typical dielectric-semiconductor structure and discusses the solution on a 3D axisymmetric domain obtained with a finite element method (FEM) software applied to the problem of selective dielectric delamination in PV solar cells.


Dielectric Layer Heat Affected Zone Free Electron Density Ultrafast Laser Pulse Free Electron Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Armin G. Aberle, Wu Zhang, Bram Hoex, Energy Proc. 8, 244 (2011)CrossRefGoogle Scholar
  2. 2.
    Tino Rublack, Gerhard Seifert, Opt. Mater. Express 1, 543 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Zanuccoli,, Numerical simulation and modeling of rear point contact solar cells, in IEEE 37th Photovoltaic Specialists Conference (PVSC), 2011 (IEEE, 2011)Google Scholar
  4. 4.
    S. Buratin, P. Villoresi, Opt. Mater. Express 3, 1925 (2013)CrossRefGoogle Scholar
  5. 5.
    M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)zbMATHGoogle Scholar
  6. 6.
    T.Q. Qiu, C.L. Tien, J. Heat Transfer 115, 835 (1993)CrossRefGoogle Scholar
  7. 7.
    Benxin Wu, Yung C. Shin, Appl. Surf. Sci. 255, 4996 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Nadezhda M. Bulgakova et al., Appl. Phys. A 81, 345 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    B.C. Stuart et al., Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Henry M. Van Driel, Phys. Rev. B 35, 8166 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Ya.B. Zel’Dovich, Physics of Shock Waves and High-Temperature Hydrodinamic Phenomena (Academic Press, New York, London, 1966)Google Scholar
  12. 12.
    Eugene G. Gamaly et al., Phys. Rev. B 73, 4101 (2006)CrossRefGoogle Scholar
  13. 13.
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, 1984)Google Scholar
  14. 14.
    R.K. Pathria, P.D. Beale, Statistical Mechanics (Elsevier, 2011)Google Scholar
  15. 15.
    K. Huang, Statistical Mechanics (Wiley, New York, 1987)Google Scholar
  16. 16.
    T. Sjodin, H. Petek, H.L. Dai, Phys. Rev. Lett. 81, 5664 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Delphine Bouilly, Danny Perez, Laurent J. Lewis, Phys. Rev. B 76, 184119 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Patrick Lorazo, Laurent J. Lewis, Michel Meunier, Phys. Rev. Lett. 91, 225502 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    L. Davison, Fundamentals of Shock Wave Propagation in Solids (Springer-Verlag, Berlin, 2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Polo Fotovoltaico Veneto, Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations