Lattice Boltzmann study on thermoacoustic onset in a Rijke tube

  • Yong WangEmail author
  • Dong-Ke Sun
  • Ya-Ling He
  • Wen-Quan Tao
Regular Article


Nonlinear thermoacoustic self-excited onset was numerically studied in this work. A lattice Boltzmann model for viscous compressible flow and the implicit-explicit finite difference method were used to develop a solver. Nonlinear onset in an open-open Rijke tube with a constant-temperature stack was simulated with the solver. Based on the numerical results, overall onset process and self-excited standing wave in the Rijke tube are observed. The length of the Rijke tube along the x -direction covers a 1/4 wavelength of the standing wave and the main component of this standing wave is 171.2Hz. These results agree well with the theoretical prediction. Instantaneous velocity and temperature fields at several phases under the limit cycle are presented and discussed. The maximal Mach number is about 0.035, indicating that the flow in the Rijke tube is a low Mach number compressible flow. This solver can also be applied for simulations of some other complex flows, such as the flow in porous media stack in thermoacoustic engine.


Mach Number Standing Wave Lattice Boltzmann Method Lattice Boltzmann Model Onset Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Gopinath, N.L. Tait, S.L. Garrett, J. Acoust. Soc. Am. 103, 1388 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    C.C. Hantschk, D. Vortmeyer, J. Sound Vib. 277, 511 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Hantschk, D. Vortmeyer, Chem. Eng. Technol. 23, 758 (2000)CrossRefGoogle Scholar
  4. 4.
    B. Entezam, W.K.V. Moorhem, J. Majdalani, Numer. Heat Transfer A 41, 245 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    G.Y. Yu et al., J. Appl. Phys. 102, 074901 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    L. Kabiraj, R.I. Sujith, J. Fluid Mech. 713, 376 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    L. Qiu et al., Chin. Sci. Bull. 58, 1325 (2013)CrossRefGoogle Scholar
  8. 8.
    D.M. Sun et al., Appl. Acoust. 81, 50 (2014)CrossRefGoogle Scholar
  9. 9.
    K.T. Feldman, J. Sound Vib. 7, 83 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    W. Kunz, Untensuchungen zum anregungsmechanismus thermoakustischer schwingungen am beispiel des Rijke phänomens (Technische Universität, Berilin, 1981)Google Scholar
  11. 11.
    M.A. Heckl, Acustica 72, 63 (1990)Google Scholar
  12. 12.
    P. Chatterjee et al., J. Sound Vib. 283, 573 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    S. Succi, Lattice Boltzmann equation for fluid dynamics and beyond (Clarendon Press, Oxford, 2001)Google Scholar
  14. 14.
    G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Buick, C.A. Greated, D.M. Campbell, Europhys. Lett. 43, 235 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    D. Haydock, J.M. Yeomans, J. Phys. A 34, 5201 (2001)ADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    X.M. Li, R.C.K. Leung, R.M.C. So, AIAA J. 44, 78 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    H. Kang, M. Tsutahara, Int. J. Numer. Methods Fluids 53, 629 (2007)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    D.K. Sun et al., Chin. Phys. Lett. 30, 074702 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wang, S. Elghobashi, Respir. Physiol. Neurobiol. 193, 1 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Wang et al., Int. J. Heat Mass Transfer 51, 3082 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Y. Wang et al., Int. J. Numer. Methods Fluids 59, 853 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Y. Wang et al., Int. J. Mod. Phys. C 21, 383 (2010)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Y. Wang et al., Int. J. Mod. Phys. C 18, 1961 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    T. Kataoka, M. Tsutahara, Phys. Rev. E 69, 035701 (2004)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Z.L. Guo, C.G. Zheng, B.C. Shi, Chin. Phys. 11, 0366 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    L. Pareschi, G. Russo, J. Sci. Comput. 25, 129 (2005)zbMATHMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yong Wang
    • 1
    • 2
    Email author
  • Dong-Ke Sun
    • 3
  • Ya-Ling He
    • 1
  • Wen-Quan Tao
    • 1
  1. 1.Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power EngineeringXi’an Jiaotong UniversityShaanxiChina
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations