Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source

  • Constantin FetecauEmail author
  • Dumitru Vieru
  • Corina Fetecau
  • Ioan Pop
Regular Article


General solutions for the dimensionless velocity corresponding to the unsteady radiative MHD free convection flow of an incompressible viscous fluid over a moving plate with mass diffusion and slip/no-slip conditions are established by combining the Laplace transform technique with the homotopy perturbation method. Internal dissipation is neglected but the heat absorption/generation and Soret effects are considered. The results that have been obtained can generate exact solutions for any motion with technical relevance of this type. Three special cases are considered and some known results from the literature are recovered. Influence of slip parameter and of some pertinent parameters on the fluid motion is graphically underlined and discussed in the case of the uniform velocity of the plate. The required time to reach the steady state for motions due to sine and cosine oscillations of the plate is also determined.


Free Convection Buoyancy Force Vertical Plate Solid Boundary Slip Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Jaluria, Natural convection heat and mass transfer (Pergamon Press, 1980)Google Scholar
  2. 2.
    W. Kays, M. Crawford, B. Weigand, Convection heat and mass transfer (McGraw Hill, 2005)Google Scholar
  3. 3.
    P. Mohan Krishna, V. Sugunamma, N. Sandeep, Am-Euras. J. Sci. Res. 8, 135 (2013)Google Scholar
  4. 4.
    A. Postelnicu, Heat Mass Transfer 43, 595 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    H.C. Lin, M.I. Char, W.J. Chang, Numer. Heat Transfer A Appl. 55, 1096 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    M. Bhavana, D. Chenna Kesavaiah, A. Sudhakaraiah, Int. J. Innov. Res. Sci. Eng. Technol. 2, 1617 (2013)Google Scholar
  7. 7.
    K. Srihari, Chira Kesava Reddy, Int. J. Mech. Eng. 3, 1 (2014)Google Scholar
  8. 8.
    V.M. Soundalgekar, S.K. Gupta, N.S. Birajdar, Nucl. Eng. Des. 53, 339 (1979)CrossRefGoogle Scholar
  9. 9.
    A.G. Vijaya Kumar, Y. Rajasekhara Goud, S.V.K. Varma, Adv. Appl. Sci. Res. 3, 1494 (2012)Google Scholar
  10. 10.
    N. Ahmed, J. Heat Transfer T ASME 134, 062701 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 55, 7635 (2012)CrossRefGoogle Scholar
  12. 12.
    F. Soltani, U. Yilmazer, J. Appl. Polym. Sci. 70, 515 (1998)CrossRefGoogle Scholar
  13. 13.
    C. Derek, D.C. Tretheway, C.D. Meinhart, Phys. Fluids 14, L9 (2002)CrossRefGoogle Scholar
  14. 14.
    C.L.M.H. Navier, Mem. Acad. Sci. Inst. France 6, 389 (1823)Google Scholar
  15. 15.
    I.J. Rao, K.R. Rajagopal, Acta Mech. 135, 113 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    A.R.A. Khaled, K. Vafai, Int. J. Nonlinear Mech. 39, 795 (2004)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    O.D. Makinde, E. Osalusi, Rom. J. Phys. 51, 319 (2006)Google Scholar
  18. 18.
    M.M. Hamza, B.Y. Isah, H. Usman, Int. J. Comput. Appl. 33, 12 (2011)Google Scholar
  19. 19.
    C. Fetecau, D. Vieru, Corina Fetecau, S. Akhter, Z. Naturforsch. 68a, 659 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Sohail, Samiulhaq, D. Vieru, Eur. Phys. J. Plus 129, 28 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Gnaneswara Reddy, Eur. Phys. J. Plus 129, 41 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 4th edition (Taylor & Francis, New York, 2002)Google Scholar
  23. 23.
    E. Magyari, A. Pantokratoras, Int. Commun. Heat Mass 38, 554 (2011)CrossRefGoogle Scholar
  24. 24.
    D. Vieru, Corina Fetecau, C. Fetecau, Niat Nigar, Z. Naturforsch. A 69a, 714 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Narahari, K. Dutta Binay, Chem. Eng. Commun. 199, 628 (2012)CrossRefGoogle Scholar
  26. 26.
    J.H. He, Phys. Lett. A 350, 87 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    C.J. Toki, J.N. Tokis, Z. Angew. Math. Mech. 87, 4 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    T. Hayat, M.F. Afzaal, C. Fetecau, A.A. Hendi, J. Porous Media 14, 481 (2011)CrossRefGoogle Scholar
  29. 29.
    M.E. Erdogan, Int. J. Nonlinear Mech. 35, 1 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    N. Sandeep, V. Sugunamma, J. Appl. Fluid Mech. 7, 275 (2014)Google Scholar
  31. 31.
    A. Hussanan, Z. Ismail, I. Khan, A.G. Hussein, S. Shafie, Eur. Phys. J. Plus 129, 46 (2014)CrossRefGoogle Scholar
  32. 32.
    I.J. Uwanta, Murtala Sani, Int. J. Eng. Sci. 3, 77 (2014)Google Scholar
  33. 33.
    M. Turkyilmazoglu, Math. Comput. Model. 53, 1929 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    J. Biazar, H. Aminikhah, Comput. Math. Appl. 58, 2221 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    M. Turkyilmazoglu, Int. J. Nonlinear Sci. Numer. 12, 9 (2012)MathSciNetGoogle Scholar
  36. 36.
    M. Turkyilmazoglu, Advances in the Homotopy Analysis Method (World Scientific, 2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Constantin Fetecau
    • 1
    • 2
    Email author
  • Dumitru Vieru
    • 3
  • Corina Fetecau
    • 3
  • Ioan Pop
    • 4
  1. 1.Department of MathematicsTechnical University of IasiIasiRomania
  2. 2.Academy of Romanian ScientistsBucurestiRomania
  3. 3.Department of Theoretical MechanicsTechnical University of IasiIasiRomania
  4. 4.Department of MathematicsBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations