Advertisement

Anisotropic charged stellar models in Generalized Tolman IV spacetime

  • Mohammad Hassan MuradEmail author
  • Saba Fatema
Regular Article

Abstract

With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.

Keywords

Neutron Star Pressure Anisotropy Tangential Pressure Electric Charge Distribution Strange Quark Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Schwarzschild, Sitzer. Preuss. Akad. Wiss. Berlin 424, 189 (1916) (republished in Gen. Relativ. Gravit. 35.Google Scholar
  2. 2.
    R.C. Tolman, Phys. Rev. 55, 364 (1939).ADSGoogle Scholar
  3. 3.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).ADSzbMATHGoogle Scholar
  4. 4.
    M. Wyman, Phys. Rev. 75, 1930 (1949).ADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998).ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    C. Leibovitz, Phys. Rev. D 185, 1664 (1969).ADSMathSciNetGoogle Scholar
  7. 7.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, in Cambridge Monographs on Mathematical Physics, 2nd edition (Cambridge University Press, New York, 2003).Google Scholar
  8. 8.
    M.P. Korkina, Sov. Phys. J. 24, 468 (1981).Google Scholar
  9. 9.
    M.C. Durgapal, J. Phys. A: Math. Gen. 15, 2637 (1982).ADSMathSciNetGoogle Scholar
  10. 10.
    M. Ishak, L. Chamandy, N. Neary, K. Lake, Phys. Rev. D 64, 024005 (2001).ADSGoogle Scholar
  11. 11.
    K. Lake, Phys. Rev. D 67, 104015 (2003).ADSMathSciNetGoogle Scholar
  12. 12.
    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001).ADSGoogle Scholar
  13. 13.
    J.M. Lattimer, J. Phys. G: Nucl. Part. Phys. 30, S479 (2004).ADSGoogle Scholar
  14. 14.
    J.M. Lattimer, M. Prakash, Phys. Rev. Lett. 94, 111101 (2005).ADSGoogle Scholar
  15. 15.
    S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010).ADSGoogle Scholar
  16. 16.
    R.J. Adler, J. Math. Phys. 15, 727 (1974).ADSGoogle Scholar
  17. 17.
    R.C. Adams, J.M. Cohen, Astrophys. J. 200, 507 (1975).ADSGoogle Scholar
  18. 18.
    B. Kuchowicz, Astrophys. Space Sci. 33, L13 (1975).ADSMathSciNetGoogle Scholar
  19. 19.
    O.Y. Orlyansky, J. Math. Phys. 38, 5301 (1997).ADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    P.G. Whitman, J. Math. Phys. 18, 868 (1976).ADSGoogle Scholar
  21. 21.
    H. Heintzmann, Z. Physik 228, 489 (1969).ADSMathSciNetGoogle Scholar
  22. 22.
    P.G. Whitman, R.W. Redding, Astrophys. J. 224, 993 (1978).ADSGoogle Scholar
  23. 23.
    P.G. Whitman, J.F. Pizzo, Astrophys. J. 230, 893 (1979).ADSGoogle Scholar
  24. 24.
    H. Knutsen, Astrophys. Space Sci. 140, 385 (1988).ADSMathSciNetGoogle Scholar
  25. 25.
    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 334, 145 (2011).ADSzbMATHGoogle Scholar
  26. 26.
    R. Ruderman, A. Rev. Astr. Astrophys. 10, 427 (1972).ADSGoogle Scholar
  27. 27.
    V. Canuto, M. Chitre, Phys. Rev. Lett. 30, 999 (1973).ADSGoogle Scholar
  28. 28.
    V. Canuto, S.M. Chitre, Phys. Rev. D 9, 1587 (1974).ADSGoogle Scholar
  29. 29.
    V. Canuto, Annu. Rev. Astron. Astrophys. 12, 167 (1974).ADSGoogle Scholar
  30. 30.
    V. Canuto, Annu. Rev. Astron. Astrophys. 13, 335 (1975).ADSGoogle Scholar
  31. 31.
    V. Canuto, Ann. New York Acad. Sci. 302, 514 (1977).ADSGoogle Scholar
  32. 32.
    R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974).ADSGoogle Scholar
  33. 33.
    M. Cosenza, L. Herrera, M. Esculpi, L. Witten, J. Math. Phys. 22, 118 (1981).ADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    S.S. Bayin, Phys. Rev. D 26, 1262 (1982).ADSMathSciNetGoogle Scholar
  35. 35.
    K.D. Krori, P. Borgohaiann, R. Devi, Can. J. Phys. 62, 239 (1984).ADSzbMATHGoogle Scholar
  36. 36.
    L. Herrera, J. Ponce de León, J. Math. Phys. 26, 2302 (1985).ADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    J. Ponce de León, J. Math. Phys. 28, 1114 (1987).ADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    J. Ponce de León, Gen. Relativ. Gravit. 19, 797 (1987).ADSGoogle Scholar
  39. 39.
    H. Bondi, Mon. Not. R. Astron. Soc. 259, 365 (1992).ADSGoogle Scholar
  40. 40.
    M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994).ADSMathSciNetGoogle Scholar
  41. 41.
    L.K. Patel, N.P. Mehta, Aust. J. Phys. 48, 635 (1995).ADSGoogle Scholar
  42. 42.
    L. Herrera, N. Santos, Phys. Rep. 286, 53 (1997).ADSMathSciNetGoogle Scholar
  43. 43.
    L. Herrera, A.D. Prisco, J. Ospino, E. Fuenmayor, J. Math. Phys. 42, 2129 (2001).ADSzbMATHMathSciNetGoogle Scholar
  44. 44.
    B.V. Ivanov, Phys. Rev. D 65, 104011 (2002).ADSGoogle Scholar
  45. 45.
    K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002).zbMATHMathSciNetGoogle Scholar
  46. 46.
    K. Dev, M. Gleiser, Gen. Relativ. Gravit. 35, 1435 (2003).ADSzbMATHMathSciNetGoogle Scholar
  47. 47.
    M. Gleiser, K. Dev, Int. J. Mod. Phys. D 13, 1389 (2004).ADSzbMATHGoogle Scholar
  48. 48.
    T. Harko, M.K. Mak, J. Math. Phys. 41, 4752 (2000).ADSzbMATHMathSciNetGoogle Scholar
  49. 49.
    M.K. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002).ADSGoogle Scholar
  50. 50.
    T. Harko, M.K. Mak, Ann. Phys. (Leipzig) 11, 3 (2002).ADSzbMATHGoogle Scholar
  51. 51.
    M.K. Mak, T. Harko, Proc. R. Soc. London A 459, 393 (2003).ADSzbMATHMathSciNetGoogle Scholar
  52. 52.
    H. Hernández, L.A. Núñez, Can. J. Phys. 82, 29 (2004).ADSGoogle Scholar
  53. 53.
    M. Chaisi, S.D. Maharaj, Pramana J. Phys. 66, 313 (2006).ADSGoogle Scholar
  54. 54.
    M. Chaisi, S.D. Maharaj, Pramana J. Phys. 66, 609 (2006).ADSGoogle Scholar
  55. 55.
    S. Karmakar, S. Mukherjee, R. Sharma, S.D. Maharaj, Pramana J. Phys. 68, 881 (2007).ADSGoogle Scholar
  56. 56.
    R. Sharma, S.D. Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007).ADSGoogle Scholar
  57. 57.
    M. Esculpi, M. Malaver, E. Alomá, Gen. Relativ. Gravit. 39, 633 (2007).ADSzbMATHGoogle Scholar
  58. 58.
    S.D. Maharaj, R. Maartens, Gen. Relativ. Gravit. 21, 899 (1989).ADSMathSciNetGoogle Scholar
  59. 59.
    S. Thirukkanesh, S.D. Maharaj, Class. Quantum Grav. 25, 235001 (2008).ADSMathSciNetGoogle Scholar
  60. 60.
    V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Phys. Rev. D 82, 044052 (2010).ADSGoogle Scholar
  61. 61.
    T. Feroze, A.A. Siddiqui, Gen. Relativ. Gravit. 43, 1025 (2011).ADSzbMATHMathSciNetGoogle Scholar
  62. 62.
    S. Viaggiu, Int. J. Mod. Phys. D 18, 275 (2009).ADSzbMATHGoogle Scholar
  63. 63.
    V.V. Usov, Phys. Rev. D 70, 067301 (2004).ADSGoogle Scholar
  64. 64.
    V.V. Usov, T. Harko, K.S. Cheng, Astrophys. J. 620, 915 (2005).ADSGoogle Scholar
  65. 65.
    R.P. Negreiros, I.M. Mishustin, S. Schramm, F. Weber, Phys. Rev. D 82, 103010 (2010).ADSGoogle Scholar
  66. 66.
    S. Ray, A.L. Espíndola, M. Malheiro, J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 68, 084004 (2003).ADSGoogle Scholar
  67. 67.
    M. Malheiro, R. Picanço, S. Ray, J.P.S. Lemos, V.T. Zanchin, Int. J. Mod. Phys. D 13, 1375 (2004).ADSzbMATHGoogle Scholar
  68. 68.
    F. Weber, M. Meixner, R.P. Negreiros, M. Malheiro, Int. J. Mod. Phys. E 16, 1165 (2007).ADSGoogle Scholar
  69. 69.
    F. Weber, R. Negreiros, P. Rosenfield, Neutron Stars and Pulsars, in Astrophysics and Space Science Library, Vol. 357 (Springer, Berlin, 2009) DOI:10.1007/978-3-540-76965-1_0.
  70. 70.
    F. Weber, O. Hamil, K. Mimura, R.P. Negreiros, Int. J. Mod. Phys. D 19, 1427 (2010).ADSzbMATHGoogle Scholar
  71. 71.
    R.P. Negreiros, F. Weber, M. Malheiro, V. Usov, Phys. Rev. D 80, 083006 (2009).ADSGoogle Scholar
  72. 72.
    J. van Leeuwen (Editor), Structure of quark stars, in Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years, Proceedings IAU Symposium, IAU, 2012, number 291 (DOI:10.1017/S1743921312023174).
  73. 73.
    R.P. Negreiros, M. Malheiro, Int. J. Mod. Phys. D 16, 303 (2007).ADSzbMATHGoogle Scholar
  74. 74.
    A. Nduka, Gen. Relativ. Gravit. 7, 493 (1976).ADSGoogle Scholar
  75. 75.
    A. Nduka, Acta Phys. Pol. B 9, 569 (1978).Google Scholar
  76. 76.
    T. Singh, R.B.S. Yadav, Acta Phys. Pol. B 9, 831 (1978).ADSMathSciNetGoogle Scholar
  77. 77.
    P.G. Whitman, R.C. Burch, Phys. Rev. D 24, 2049 (1982).ADSGoogle Scholar
  78. 78.
    S.S. Koppar, L.K. Patel, T. Singh, Acta Phys. Hung. 69, 53 (1991).MathSciNetGoogle Scholar
  79. 79.
    M.K. Mak, P.C.W. Fung, Nuovo Cimento B 110, 897 (1995).ADSMathSciNetGoogle Scholar
  80. 80.
    M.K. Mak, P.C.W. Fung, T. Harko, Nuovo Cimento B 111, 1461 (1996).ADSMathSciNetGoogle Scholar
  81. 81.
    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 334, 301 (2011).ADSzbMATHGoogle Scholar
  82. 82.
    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 353, 657 (2014).ADSGoogle Scholar
  83. 83.
    M.K. Mak, P.N. Dobson, T. Harko, Int. J. Mod. Phys. D 11, 207 (2002).ADSGoogle Scholar
  84. 84.
    M.K. Mak, T. Harko, Int. J. Mod. Phys. D 13, 149 (2004).ADSzbMATHGoogle Scholar
  85. 85.
    M. Esculpi, E. Alomá, Eur. Phys. J. C 67, 521 (2010).ADSGoogle Scholar
  86. 86.
    K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2011).ADSMathSciNetGoogle Scholar
  87. 87.
    P.M. Takisa, S.D. Maharaj, Gen. Relativ. Gravit. 45, 1951 (2013).ADSzbMATHMathSciNetGoogle Scholar
  88. 88.
    P.M. Takisa, S.D. Maharaj, Astrophys. Space Sci. 343, 569 (2013).ADSzbMATHGoogle Scholar
  89. 89.
    S.K. Maurya, Y.K. Gupta, Phys. Scr. 86, 025009 (2012).ADSGoogle Scholar
  90. 90.
    S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 344, 243 (2013).ADSzbMATHGoogle Scholar
  91. 91.
    S.D. Maharaj, P.M. Takisa, Gen. Relativ. Gravit. 44, 1419 (2012).ADSzbMATHGoogle Scholar
  92. 92.
    F. Rahaman, R. Sharma, S. Ray, R. Maulick, I. Karar, Eur. Phys. J. C 72, 2071 (2012).ADSGoogle Scholar
  93. 93.
    M. Kalam, A.A. Usmani, F. Rahaman, S.M. Hossein, I. Karar, R. Sharma, Int. J. Theor. Phys. 52, 3319 (2013).zbMATHMathSciNetGoogle Scholar
  94. 94.
    S. Thirukkanesh, F.C. Ragel, Pramana J. Phys. 81, 275 (2013).ADSGoogle Scholar
  95. 95.
    R. Sharma, S. Karmakar, S. Mukherjee, Int. J. Mod. Phys. D 15, 405 (2006).ADSzbMATHGoogle Scholar
  96. 96.
    R. Deb, B.C. Paul, R. Tikekar, Pramana J. Phys. 79, 211 (2012).ADSGoogle Scholar
  97. 97.
    R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 22, 1350074 (2013).ADSGoogle Scholar
  98. 98.
    S.D. Maharaj, J.M. Sunzu, S. Ray, Eur. Phys. J. Plus 129, 3 (2014).Google Scholar
  99. 99.
    J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 352, 719 (2014).ADSGoogle Scholar
  100. 100.
    J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 354, 2131 (2014).Google Scholar
  101. 101.
    L. Herrera, J. Ospino, A.D. Prisco, Phys. Rev. D 77, 027502 (2008).ADSMathSciNetGoogle Scholar
  102. 102.
    M.H. Murad, S. Fatema, Some new Wyman-Adler type static relativistic charged anisotropic fluid spheres compatible to self-bound stellar modeling (2014) arXiv:1408.5126v2.
  103. 103.
    P. Anninos, T. Rothman, Phys. Rev. D 65, 024003 (2001).ADSGoogle Scholar
  104. 104.
    A. Giuliani, T. Rothman, Gen. Relativ. Gravit. 40, 1427 (2008).ADSzbMATHMathSciNetGoogle Scholar
  105. 105.
    M.H. Murad, S. Fatema, Int. J. Theor. Phys. 52, 4342 (2013).zbMATHMathSciNetGoogle Scholar
  106. 106.
    R.L. Bowers, W.D. Arnett, Astrophys. J. Suppl. 33, 415 (1977).ADSGoogle Scholar
  107. 107.
    C.G. Böhmer, T. Harko, Class. Quantum Grav. 23, 6479 (2006).ADSzbMATHGoogle Scholar
  108. 108.
    H.A. Buchdahl, Phys. Rev. 116, 1027 (1959).ADSzbMATHMathSciNetGoogle Scholar
  109. 109.
    C.G. Böhmer, T. Harko, Gen. Relativ. Gravit. 39, 757 (2007).ADSzbMATHGoogle Scholar
  110. 110.
    H. Andréasson, Commun. Math. Phys. 288, 715 (2009).ADSzbMATHGoogle Scholar
  111. 111.
    M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B 438, 123 (1998).ADSGoogle Scholar
  112. 112.
    X.-D. Li, I. Bombaci, Mira Dey, Jishnu Dey, E.P.J. van den Heuvel, Phys. Rev. Lett. 83, 3776 (1999).ADSGoogle Scholar
  113. 113.
    F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005).ADSGoogle Scholar
  114. 114.
    T. Gangopadhyay, S. Ray, X.D. Li, J. Dey, M. Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013).ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh
  2. 2.Department of Natural SciencesDaffodil International UniversityDhakaBangladesh

Personalised recommendations