Nonlinear intersubband absorption and refractive index change in n-type δ-doped GaAs for different donor distributions

  • Emine OzturkEmail author
Regular Article


In this study, both the linear and nonlinear intersubband optical absorption coefficients and the refractive index changes are calculated for the uniform, triangular and Gaussian-like donor distribution. The Gaussian-like distribution differs from the Gaussian distribution other authors use. The electronic structure of n-type Si δ-doped GaAs has been theoretically calculated by solving the Schrödinger and Poisson equations self-consistently. Our results show that the location and the size of the linear and total absorption coefficients and refractive index changes depend on the donor distribution type. The shape of δ-effective potential profile and the subband properties are changed as dependent on the donor distribution model. Therefore, the variation of the absorption coefficients and refraction index changes, which can be appropriate for various optical modulators and infrared optical device applications can be smooth obtained by the alteration donor distribution model.


GaAs Photon Energy Refractive Index Change Resonant Peak Triangular Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.H. Degani, Phys. Rev. B 44, 5580 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Li, W.M. Zheng, A.L. Wu, W.Y. Cong, J. Liu, N.N. Chu, Y.X. Song, Appl. Phys. Lett. 97, 023507 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    E. Ozturk, Superlattices Microstruct. 46, 752 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    E. Ozturk, I. Sokmen, J. Phys. D 36, 2457 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    I. Rodriguez-Vargas, L.M. Gaggero-Sager, V.R. Velasco, Surf. Sci. 537, 75 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    E.F. Schubert, J. Vac. Sci. Technol. A 8, 2980 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, K.H. Ploog, Phys. Rev. Lett. 96, 187402 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Egues, J.C. Barbosa, A.C. Notari, P. Basmaji, L. Ioriatti, J. Appl. Phys. 70, 3678 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    E. Ozturk, Y. Ergun, H. Sari, I. Sokmen, J. Appl. Phys. 91, 2118 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    O. Oubram, I. Rodriguez-Vargas, J.C. Martinez-Orozco, Rev. Mexicana Fis. 60, 161 (2014).MathSciNetGoogle Scholar
  11. 11.
    Y.M. Lin, S.L. Wu, S.J. Chang, S. Koh, Y. Shiraki, IEEE Electr. Device L 24, 69 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    E. Ozturk, Y. Ozdemir, Opt. Commun. 294, 361 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    E. Ozturk, Y. Ergun, H. Sari, I. Sokmen, Eur. Phys. J. Appl. Phys. 21, 97 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    Ph. Ebert, S. Landrock, Y.P. Chiu, U. Breuer, R.E. Dunin-Borkowski, Appl. Phys. Lett. 101, 192103 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    E. Ozturk, M.K. Bahar, I. Sokmen, Eur. Phys. J. Appl. Phys. 41, 195 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M.L. Ke, J.S. Rimmer, B. Hamilton, J.H. Evans, M. Missous, K.E. Singer, P. Zalm, Phys. Rev. B 45, 14114 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 48, 478 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    R.J. Turton, M. Jaros, Appl. Phys. Lett. 47, 1986 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, R.J. Malik, Appl. Phys. Lett. 50, 1814 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    K.W. Gossen, S.A. Lyon, Appl. Phys. Lett. 47, 289 (1985).CrossRefGoogle Scholar
  22. 22.
    D. Ahn, S.L. Chuang, Phys. Rev. B 35, 4149 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    R.P.G. Karunasiri, Y.J. Mii, K.L. Wang, IEEE Electron Dev. Lett. 11, 227 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    S. Noda, T. Uemura, T. Yamashita, A. Sasaki, J. Appl. Phys. 68, 6529 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    L. Lu, W. Xie, H. Hassanabadi, J. Appl. Phys. 109, 063108 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    H. Yildirim, M. Tomak, Phys. Stat. Solidi B 243, 2874 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    E. Ozturk, I. Sokmen, J. Lumin. 134, 42 (2013).CrossRefGoogle Scholar
  28. 28.
    C. Lien, Y. Huang, J. Wang, J. Appl. Phys. 76, 1008 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Stat. Sol. 4, 292 (2007).CrossRefGoogle Scholar
  30. 30.
    R. Wei, W. Xie, Curr. Appl. Phys. 10, 757 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    E. Ozturk, I. Sokmen, Opt. Commun. 285, 5223 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    K.A. Rodriguez-Magdaleno, J.C. Martinez-Orozco, I. Rodriguez-Vargas, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 147, 77 (2014).CrossRefGoogle Scholar
  34. 34.
    J.C. Martinez-Orozco, M.E. Mora-Ramos, C.A. Duque, Phys. Stat. Solidi B 249, 146 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    G. Liu, K. Guo, Q. Wu, Superlattices Microstruct. 52, 183 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    M.J. Karimi, A. Keshavarz, A. Poostforush, Superlattices Microstruct. 49, 441 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    O. Oubram, O. Navarro, L.M. Gaggero-Sager, J.C. Martínez-Orozcoc, I. Rodríguez-Vargas, Solid State Sci. 14, 440 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    A. Ben Jazia, H. Mejri, H. Maaref, K. Souissi, Semicond. Sci. Tech. 12, 1388 (1997).ADSCrossRefGoogle Scholar
  39. 39.
    D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-23, 2196 (1987).ADSGoogle Scholar
  40. 40.
    K.J. Kuhn, G.U. Lyengar, S. Yee, J. Appl. Phys. 70, 5010 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsCumhuriyet UniversitySivasTurkey

Personalised recommendations