Experimental heat-bath cooling of spins

  • G. Brassard
  • Y. Elias
  • J. M. Fernandez
  • H. Gilboa
  • J. A. Jones
  • T. Mor
  • Y. WeinsteinEmail author
  • L. Xiao
Open Access
Regular Article
Part of the following topical collections:
  1. Focus Point on Quantum information and complexity


Algorithmic cooling (AC) is a method to purify quantum systems, such as ensembles of nuclear spins, or cold atoms in an optical lattice. When applied to spins, AC produces ensembles of highly polarized spins, which enhance the signal strength in nuclear magnetic resonance (NMR). According to this cooling approach, spin-half nuclei in a constant magnetic field are considered as bits, or more precisely quantum bits, in a known probability distribution. Algorithmic steps on these bits are then translated into specially designed NMR pulse sequences using common NMR quantum computation tools. The algorithmic cooling of spins is achieved by alternately combining reversible, entropy-preserving manipulations (borrowed from data compression algorithms) with selective reset, the transfer of entropy from selected spins to the environment. In theory, applying algorithmic cooling to sufficiently large spin systems may produce polarizations far beyond the limits due to conservation of Shannon entropy. Here, only selective reset steps are performed, hence we prefer to call this process “heat-bath” cooling, rather than algorithmic cooling. We experimentally implemented two consecutive steps of selective reset, thus transferring entropy from two selected spins to the environment. We performed such cooling experiments, with commercially available labeled molecules, on standard liquid-state NMR spectrometers. We report in particular on our original experiment, unpublished until now except on the arXiv (quant-ph/0511156) in 2005, which was, to the best of our knowledge, the world’s first experiment that yielded polarizations results that bypassed Shannon’s entropy-conservation bound, so that the entire spin-system was cooled.


Entropy Nuclear Magnetic Resonance Polarization Transfer Dynamic Nuclear Polarization Swap Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, UK, 1987).Google Scholar
  2. 2.
    C.P. Slichter, Principles of Magnetic Resonance, 3 edition (Springer, Berlin, 1990).Google Scholar
  3. 3.
    O.W. Sørensen, Prog. Nucl. Mag. Res. Spec. 21, 503 (1989).CrossRefGoogle Scholar
  4. 4.
    J.H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. U.S.A. 100, 10158 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    C.G. Joo, K.N. Hu, J.A. Bryant, R.G. Griffin, J. Am. Chem. Soc. 128, 9428 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Anwar, D. Blazina, H. Carteret, S.B. Duckett, T. Halstead, J.A. Jones, C. Kozak, R. Taylor, Phys. Rev. Lett. 93, 040501 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Fitzgerald, K.L. Sauer, W. Happer, Chem. Phys. Lett. 284, 87 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Verhulst, O. Liivak, M.H. Sherwood, H.-M. Vieth, I.L. Chuang, Appl. Phys. Lett. 79, 2480 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Oros, N.J. Shah, Phys. Med. Biol. 49, R105 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    L.J. Schulman, U.V. Vazirani, in ACM Symposium on the Theory of Computing (STOC): Proceedings (1999) pp. 322--329.Google Scholar
  11. 11.
    R.B. Ash, Information Theory (Dover, New York, 1990).Google Scholar
  12. 12.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).Google Scholar
  13. 13.
    P.O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen, Proc. Natl. Acad. Sci. U.S.A. 99, 3388 (2002).ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    J.M. Fernandez, S. Lloyd, T. Mor, V. Roychowdhury, Int. J. Quantum Inf. 2, 461 (2004).CrossRefGoogle Scholar
  15. 15.
    T. Mor, V. Roychowdhury, S. Lloyd, J.M. Fernandez, Y. Weinstein, US patent No. 6,873,154 (2005).Google Scholar
  16. 16.
    G. Brassard, Y. Elias, J.M. Fernandez, H. Gilboa, J.A. Jones, T. Mor, Y. Weinstein, L. Xiao, arXiv:quant-ph/0511156 (2005).
  17. 17.
    D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y.S. Weinstein, W. Zurek, Fortschr. Phys. 48, 875 (2000).CrossRefGoogle Scholar
  18. 18.
    J.A. Jones, Prog. Nucl. Mag. Res. Spec. 38, 325 (2001).CrossRefGoogle Scholar
  19. 19.
    L.J. Schulman, T. Mor, Y. Weinstein, Phys. Rev. Lett. 94, 120501 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Fernandez, De Computatione Quantica, PhD thesis, University of Montreal, Canada (2003).Google Scholar
  21. 21.
    G.A. Morris, R. Freeman, J. Am. Chem. Soc. 101, 760 (1979).CrossRefGoogle Scholar
  22. 22.
    J.M. Fernandez, T. Mor, Y. Weinstein, Int. J. Quantum Inf. 3, 283 (2005).CrossRefGoogle Scholar
  23. 23.
    H.K. Cummins, C. Jones, A. Furze, N.F. Soffe, M. Mosca, J.M. Peach, J.A. Jones, Phys. Rev. Lett. 88, 187901 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    L. Emsley, A. Pines, in Nuclear Magnetic Double Resonance, Proceedings of the CXXIII School of Physics “Enrico Fermi” (World Scientific, Amsterdam, 1993) p. 216.Google Scholar
  25. 25.
    R. Freeman, Spin Choreography (Oxford University Press, 1998).Google Scholar
  26. 26.
    D.E. Chang, L.M. Vandersypen, M. Steffen, Chem. Phys. Lett. 338, 337 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    T.B. Rodrigues, S. Cerdán, Concepts Magn. Reson. Part A 27A, 1 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Elias, H. Gilboa, T. Mor, Y. Weinstein, Chem. Phys. Lett. 517, 126 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Atia, Algorithmic Cooling of Spins by Optimal Control, Master’s thesis, Comp. Sci. Dept., Technion - Israel Institute of Technology (2013).Google Scholar
  30. 30.
    Y. Atia, Y. Elias, T. Mor, Y. Weinstein, Algorithmic Cooling in Liquid State NMR, arXiv:1411.4641 [quant-ph].
  31. 31.
    J. Baugh, O. Moussa, C.A. Ryan, A. Nayak, R. Laflamme, Nature 438, 470 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    C.A. Ryan, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. Lett. 100, 140501 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Mag. Reson. 172, 296 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    Z. Tošner, J. Mag. Reson. 197, 120 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    L.J. Schulman, T. Mor, Y. Weinstein, SIAM J. Comp. 36, 1729 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Y. Elias, T. Mor, Y. Weinstein, Phys. Rev. A 83, 042340 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    F. Rempp, M. Michel, G. Mahler, Phys. Rev. A 76, 032325 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Henrich, F. Rempp, G. Mahler, Eur. Phys. J. ST 151, 157 (2007).CrossRefGoogle Scholar
  39. 39.
    H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, EPL 83, 30008 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    H.J. Briegel, S. Popescu, arXiv:0806.4552 [quant-ph] (2008).
  41. 41.
    N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    O.C.O. Dahlsten, R. Renner, E. Rieper, V. Vedral, New J. Phys. 13, 053015 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    W.S. Bakr, P.M. Preiss, M.E. Tai, R. Ma, J. Simon, M. Greiner, Nature 480, 500 (2011).ADSCrossRefGoogle Scholar
  44. 44.
    S. Simmons, R.M. Brown, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, M.L.W. Thewalt, K.M. Itoh, J.J.L. Morton, Nature 470, 69 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    B. Criger, O. Moussa, R. Laflamme, arXiv:1103.4396 [quant-ph] (2011).
  46. 46.
    R. Renner, Nature 482, 164 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    A. Blank, Quantum Inf. Process. 12, 2993 (2013).ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    J. Baugh, J. Chamilliard, N.M. Chandrashekar, M. Ditty, A. Hubbard, R. Laflamme, M. Laforest, D. Maslov, O. Moussa, C. Negrevergne, M.P. da Silva, S. Simmons, C.A. Ryan, D.G. Cory, J.S. Hodges, C. Ramanathan, Phys. Can. 63, 197 (2007).Google Scholar
  49. 49.
    S. Lloyd, Nat. Photon. 8, 90 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    J.-S. Xu, M.-H. Yung, X.-Y. Xu, S. Boixo, Z.-W. Zhou, C.-F. Li, A. Aspuru-Guzik, G.-C. Guo, Nat. Photon. 8, 113 (2014).ADSCrossRefGoogle Scholar
  51. 51.
    A.W. Overhauser, Phys. Rev. 92, 411 (1953).ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    J. Granwehr, J.T. Urban, A.H. Trabesinger, A. Pines, J. Mag. Reson. 176, 125 (2005).ADSCrossRefGoogle Scholar
  53. 53.
    G. Navon, Y.-Q. Song, T. Rõõm, Science 271, 1848 (1996).ADSCrossRefGoogle Scholar
  54. 54.
    M. Anwar, J.A. Jones, D. Blazina, S.B. Duckett, H. Carteret, Phys. Rev. A 70, 032324 (2004).ADSCrossRefGoogle Scholar
  55. 55.
    A.E. Derome, Modern NMR Techniques for Chemistry Research (Pergamon Press, Oxford, UK, 1987).Google Scholar
  56. 56.
    T. Mor, Algorithmic Cooling, in Encyclopedia of Algorithms, edited by Ming-Yang Kao (Springer, Germany, 2008) pp. 11--16.Google Scholar
  57. 57.
    Y. Elias, J.M. Fernandez, T. Mor, Y. Weinstein, Isr. J. Chem. 46, 371 (2006).CrossRefGoogle Scholar
  58. 58.
    D.P. Burum, R.R. Ernst, J. Mag. Reson. 39, 163 (1980).ADSGoogle Scholar
  59. 59.
    G. Brassard, Y. Elias, T. Mor, Y. Weinstein, Eur. Phys. J. Plus 129, 258 (2014).CrossRefGoogle Scholar
  60. 60.
    Y. Atia, Y. Elias, T. Mor, Y. Weinstein, Int. J. Quantum Inf. 12, 1450031 (2014).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • G. Brassard
    • 1
    • 2
    • 3
  • Y. Elias
    • 4
  • J. M. Fernandez
    • 5
  • H. Gilboa
    • 6
  • J. A. Jones
    • 7
  • T. Mor
    • 4
  • Y. Weinstein
    • 4
    Email author
  • L. Xiao
    • 7
  1. 1.Département IROUniversité de MontréalMontréalCanada
  2. 2.The Canadian Institute for Advanced ResearchTorontoCanada
  3. 3.Institute for Theoretical Studies at ETHZürichSwitzerland
  4. 4.Department of Computer ScienceTechnionHaifaIsrael
  5. 5.Département de génie informatiqueÉcole Polytechnique de MontréalMontréalCanada
  6. 6.Department of ChemistryTechnionHaifaIsrael
  7. 7.Centre for Quantum Computation, Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations