Advertisement

A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems

  • A. H. Bhrawy
  • E. H. Doha
  • S. S. Ezz-Eldien
  • Robert A. Van Gorder
Regular Article

Abstract.

The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.

Keywords

Imaginary Part Fractional Derivative Collocation Method Fractional Calculus Operational Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Bohannan, J. Vibr. Control 14, 1487 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    H.G. Sun, W. Chen, H. Wei, Y.Q. Chen, Eur. Phys. J. ST 193, 185 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Chen, F. Liu, Appl. Math. Modell. 33, 256 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    H.G. Sun, W. Chen, C. Li, Y.Q. Chen, Phys. A Stat. Mech. Appl. 389, 2719 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Das, Functional Fractional Calculus for System Identification and Controls (Springer, NewYork, 2008)Google Scholar
  6. 6.
    S.S. Ray, Appl. Math. Comput. 218, 5239 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Dehghan, J.M. Heris, A. Saadatmandi, Numer. Methods Partial Differ. Equ. 26, 448 (2010)zbMATHGoogle Scholar
  8. 8.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Appl. Math. Comput. 234, 267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Zhuang, Y.T. Gu, F. Liu, I. Turner, P.K. Yarlagadda, Int. J. Numer. Methods Eng. 88, 1346 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Zhou, W. Tian, W. Deng, J. Sci. Comput. 56, 45 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Q. Yang, I. Turner, F. Liu, M. Ilis, SIAM J. Sci. Comput. 33, 1159 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R.K. Pandey, O.P. Singh, V.K. Baranwal, Comput. Phys. Commun. 182, 1134 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Liu, G. Hou, Appl. Math. Comput. 217, 7001 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Y. Jiang, J. Ma, J. Comput. Appl. Math. 235, 3285 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Appl. Math. Model. 35, 5662 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A.H. Bhrawy, A.S. Alofi, S.S. Ezz-Eldien, Appl. Math. Lett. 24, 2146 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A.H. Bhrawy, M.M. Al-Shomrani, Adv. Differ. Equ. 2012, 1 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    E.H. Doha, A.H. Bhrawy, D. Baleanu, S.S. Ezz-Eldien, Appl. Math. Comput. 219, 8042 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Comput. Math. Appl. 62, 2364 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A.H. Bhrawy, E.H. Doha, D. Baleanu, S.S. Ezz-Eldien, J. Comput. Phys., DOI:10.1016/j.jcp.2014.03.039
  23. 23.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Cent. Eur. J. Phys. 11, 1494 (2013)CrossRefGoogle Scholar
  24. 24.
    E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy, R.A.V. Gorder, J. Comput. Phys. 261, 244 (2014)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.R. Eslahchi, M. Dehghan, M. Parvizi, J. Comput. Appl. Math. 257, 105 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 62, 1135 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    M. Dehghan, A. Taleei, Comput. Phys. Commun. 181, 43 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Z. Gao, S. Xie, Appl. Numer. Math. 61, 593 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    X. Guo, M. Xu, J. Math. Phys. 47, 82 (2006)MathSciNetGoogle Scholar
  30. 30.
    A. Iomin, Chaos Solitons Fractals 44, 348 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    N. Laskin, Phys. Rev. E 66, 056108 (2002)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    N. Laskin, Phy. Rev. E 62, 3135 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    N. Laskin, Phys. Lett. A 268, 298 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Naber, J. Math. Phys. 45, 3339 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S.Z. Rida, H.M. El-Sherbiny, A.A.M. Arafa, Phys. Lett. A 372, 553 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    N.A. Khan, M. Jamil, A. Ara, ISRN Math. Phys. 2012, 197068 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Yildirim, Int. J. Nonlinear Sci. Numer. Simulat. 10, 445 (2009)Google Scholar
  38. 38.
    K. Aruna, A.S.V.R. Kanth, Natl. Acad. Sci. Lett. 36, 201 (2013)CrossRefGoogle Scholar
  39. 39.
    P. Felmer, Proc. R. Soc. Edinburgh 142, 1237 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    M.A.E. Herzallah, K.A. Gepreel, Appl. Math. Modell. 36, 5678 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    J. Hu, J. Xin, H. Lu, Comput. Math. Appl. 62, 1510 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    S.I. Muslih, O.P. Agrawal, D. Baleanu, Int. J. Theor. Phys. 49, 1746 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    P. Wang, C. Huang, J. Comput. Phys., DOI:10.1016/j.jcp.2014.03.037
  44. 44.
    L. Wei, Y. He, X. Zhang, S. Wang, Finite Elements Anal. Des. 59, 28 (2012)MathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Mohebbi, M. Abbaszadeh, M. Dehghan, Eng. Anal. Bound. Elements 37, 475 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    S. Leble, B. Reichel, Eur. Phys. J. ST 173, 5 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Aydin, B. Karasözen, Int. J. Comput. Math. 86, 864 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    M.S. Ismail, Appl. Math. Comput. 196, 273 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    T. Wang, B. Guo, L. Zhang, Appl. Math. Comput. 217, 1604 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    X.W. Zhou, L. Wang, Comput. Math. Appl. 61, 2035 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    L. Wei, X. Zhang, S. Kumar, A. Yildirim, Comput. Math. Appl. 64, 2603 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    D. Wang, A. Xiao, W. Yang, J. Comput. Phys. 242, 670 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    D. Wang, A. Xiao, W. Yang, J. Comput. Phys. 272, 644 (2014)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    M. Gasca, T. Sauer, J. Comput. Appl. Math. 122, 23 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    J. De Villiers, Mathematics of Approximation (Atlantis Press, 2012)Google Scholar
  57. 57.
    M.R. Eslahchi, M. Dehghan, M. Parvizi, J. Comput. Appl. Math. 257, 105 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Y. Yang, Y. Huang, Adv. Math. Phys 2013, 821327 (2013)Google Scholar
  59. 59.
    Y. Yang, Y. Chen, Y. Huang, Acta Math. Sci. 34B, 673 (2014)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Q. Xu, J.S. Hesthaven, J. Comput. Phys. 257, 241 (2014)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    X. Ma, C. Huang, Appl. Math. Modell. 38, 1434 (2014)MathSciNetCrossRefGoogle Scholar
  62. 62.
    X. Li, T. Tang, Front. Math. China 1, 69 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. H. Bhrawy
    • 1
    • 2
  • E. H. Doha
    • 3
  • S. S. Ezz-Eldien
    • 4
  • Robert A. Van Gorder
    • 5
  1. 1.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  3. 3.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  4. 4.Department of Basic Science, Institute of Information TechnologyModern AcademyCairoEgypt
  5. 5.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations