Advertisement

Diagonal quantum circuits: Their computational power and applications

  • Yoshifumi NakataEmail author
  • Mio Murao
Review
Part of the following topical collections:
  1. Focus Point on Quantum information and complexity

Abstract.

Diagonal quantum circuits are quantum circuits comprising only diagonal gates in the computational basis. In spite of a classical feature of diagonal quantum circuits in the sense of commutativity of all gates, their computational power is highly likely to outperform classical ones and they are exploited for applications in quantum informational tasks. We review computational power of diagonal quantum circuits and their applications. We focus on the computational power of instantaneous quantum polynomial-time (IQP) circuits, which are a special type of diagonal quantum circuits. We then review an approximate generation of random states as an application of diagonal quantum circuits, where random states are an ensemble of pure states uniformly distributed in a Hilbert space. We also present a thermalizing algorithm of classical Hamiltonians by using diagonal quantum circuits. These applications are feasible to be experimentally implemented by current technology due to a simple and robust structure of diagonal gates.

Keywords

Quantum Circuit Random State Computational Basis Classical Simulatability Polynomial Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.W. Shor, SIAM J. Sci. Stat. Comput. 26, 1484 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Hallgren, in Proceedings of the 34th ACM Symposium on Theory of Computing (ACM Press, 2002) p. 54Google Scholar
  3. 3.
    A. Schmidt, arXiv:0912.4807 (2009)
  4. 4.
    M. Freedman, M. Larsen, Z. Wang, Commun. Math. Phys. 227, 605 (2002)CrossRefzbMATHMathSciNetADSGoogle Scholar
  5. 5.
    D. Aharonov, V. Jones, Z. Landau, in Proceedings of the 38th ACM Symposium on Theory of Computing (ACM Press, 2006)Google Scholar
  6. 6.
    P. Wocjan, J. Yard, Quantum Inf. Comput. 8, 147 (2008)zbMATHMathSciNetGoogle Scholar
  7. 7.
    D. Aharonov, I. Arad, E. Eban, Z. Landau, arXiv:quant-ph/0702008 (2007)
  8. 8.
    R. Jozsa, N. Linden, Proc. R. Soc. A 8, 2011 (2003)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    L.G. Valiant, SIAM J. Comput. 31, 1229 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Jozsa, A. Miyake, Proc. R. Soc. A 464, 3089 (2008)CrossRefzbMATHMathSciNetADSGoogle Scholar
  11. 11.
    D. Shepherd, M.J. Bremner, Proc. R. Soc. A 465, 1413 (2009)CrossRefzbMATHMathSciNetADSGoogle Scholar
  12. 12.
    M.J. Bremner, R. Jozsa, D.J. Shepherd, Proc. R. Soc. A 467, 459 (2011)CrossRefzbMATHMathSciNetADSGoogle Scholar
  13. 13.
    X. Ni, M. van den Nest, Quantum Inf. Comput. 13, 0054 (2013)MathSciNetGoogle Scholar
  14. 14.
    M.J. Hoban, J.J. Wallman, H. Anwar, N. Usher, R. Raussendorf, D.E. Browne, arXiv:1304.2667 (2013)
  15. 15.
    K. Fujii, T. Morimae, arXiv:1311.2128 (2013)
  16. 16.
    Y. Nakata, P.S. Turner, M. Murao, Phys. Rev. A 86, 012301 (2012)CrossRefADSGoogle Scholar
  17. 17.
    P. Aliferis, F. Brito, D.P. DiVincenzo, J. Preskill, M. Steffen, B.M. Terhal, New J. Phys. 11, 013061 (2009)CrossRefADSGoogle Scholar
  18. 18.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997)CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    J.M. Renes, R. Blume-Kohout, A.J. Scott, C.M. Caves, J. Math. Phys. 45, 6 (2004)CrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Radhakrishnan, M. Rotteler, P. Sen, Algorithmica 55, 490 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    P. Sen, IEEE Conf. Comput. Complex., 274 (2006)Google Scholar
  22. 22.
    C. Dankert, R. Cleve, J. Emerson, E. Livine, Phys. Rev. A 80, 012304 (2009)CrossRefADSGoogle Scholar
  23. 23.
    J. Emerson, Y.S. Weinstein, M. Saraceno, S. Lloyd, D.G. Cory, Science 302, 2098 (2003)CrossRefzbMATHMathSciNetADSGoogle Scholar
  24. 24.
    D.P. DiVincenzo, D.W. Leung, B.M. Terhal, IEEE Trans. Inf. Theory 48, 580 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    R. Oliveira, O.C.O. Dahlsten, M.B. Plenio, Phys. Rev. Lett. 98, 130502 (2007)CrossRefADSGoogle Scholar
  26. 26.
    O.C.O. Dahlsten, R. Oliveira, M.B. Plenio, J. Phys. A: Math. Theor. 40, 8081 (2007)CrossRefzbMATHMathSciNetADSGoogle Scholar
  27. 27.
    M. Znidaric, Phys. Rev. A 78, 032324 (2008)CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    A.W. Harrow, R.A. Low, Commun. Math. Phys. 291, 257 (2009)CrossRefzbMATHMathSciNetADSGoogle Scholar
  29. 29.
    I.T. Diniz, D. Jonathan, Commun. Math. Phys. 304, 281 (2011)CrossRefzbMATHMathSciNetADSGoogle Scholar
  30. 30.
    A.W. Harrow, R.A. Low Proceedings of RANDOM 2009, LNCS, Vol. 5687 (2009) pp. 548--561CrossRefMathSciNetGoogle Scholar
  31. 31.
    F.G.S.L. Brandao, A.W. Harrow, M. Horodecki, arXiv:1208.0692 (2012)
  32. 32.
    P. Ćwikliński, M. Horodecki, M. Mozrzymas, L. Pankowski, M. Studziński, J. Phys. A: Math. Theor. 46, 305301 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Ambainis, J. Emerson IEEE Conference on Computational Complexity (IEEE, 2007) pp. 129--140CrossRefGoogle Scholar
  34. 34.
    R.A. Low, Proc. R. Soc. A 465, 3289 (2009)CrossRefzbMATHMathSciNetADSGoogle Scholar
  35. 35.
    Y. Nakata, M. Murao, Int. J. Quantum Inf. 11, 1350062 (2013)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Y. Nakata, M. Koashi, M. Murao, New J. Phys. 16, 053043 (2014)CrossRefADSGoogle Scholar
  37. 37.
    S. Arora, B. Barak, Computational complexity: a modern approach (Cambridge University Press, New York, USA, 2009)Google Scholar
  38. 38.
    C. Papadimitriou, Computational complexity (Addison Wesley Publishing Company, Chichester, UK, 1994)Google Scholar
  39. 39.
    E. Bernstein, U. Vazirani, in Proceedings of the 25th annual ACM symposium on Theory of computing (ACM, 1993) pp. 11--20Google Scholar
  40. 40.
    L. Adleman, J. DeMarrais, M.-D. Huang, SIAM J. Comput. 26, 1524 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    S. Aaronson, in STOC 10 Proceedings of the forty-second ACM symposium on Theory of computing (ACM, 2009) pp. 141--150Google Scholar
  42. 42.
    M. van den Nest, Quantum Inf. Comput. 10, 0258 (2010)MathSciNetGoogle Scholar
  43. 43.
    S. Aaronson, Proc. R. Soc. A 461, 3473 (2005)CrossRefzbMATHMathSciNetADSGoogle Scholar
  44. 44.
    S. Toda, SIAM J. Comput. 20, 865 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Y. Han, L. Hemaspaandra, T. Thierauf, SIAM J. Comput. 26, 59 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    M.L. Metha, Random Matrices (Academic Press, 1990)Google Scholar
  47. 47.
    P.O. Boykin, V. Roychowdhury, Phys. Rev. A 67, 042317 (2003)CrossRefADSGoogle Scholar
  48. 48.
    A. Ambainis, M. Mosca, A. Tapp, R. de Wolf, in Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (2000) pp. 547--553Google Scholar
  49. 49.
    A. Ambainis, A. Smith, in Proceedings of RANDOM’04 (2004) pp. 249--260Google Scholar
  50. 50.
    P.A. Dickinson, A. Nayak, AIP Conf. Proc. 864, 18 (2006)CrossRefADSGoogle Scholar
  51. 51.
    P. Hayden, D. Leung, P.W. Shor, A. Winter, Commun. Math. Phys. 250, 371 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  52. 52.
    G. Aubrun, Commun. Math. Phys. 288, 1103 (2009)CrossRefzbMATHMathSciNetADSGoogle Scholar
  53. 53.
    H.-K. Lo, Phys. Rev. A 62, 012313 (2000)CrossRefADSGoogle Scholar
  54. 54.
    A. Harrow, P. Hyden, D. Leung, Phys. Rev. Lett. 92, 187901 (2004)CrossRefADSGoogle Scholar
  55. 55.
    B.M. Terhal, David P. DiVincenzo, D.W. Leung, Phys. Rev. Lett. 86, 5807 (2001)CrossRefADSGoogle Scholar
  56. 56.
    M. Hastings, Nat. Phys. 5, 255 (2009)CrossRefGoogle Scholar
  57. 57.
    E. Lubkin, J. Math. Phys. 19, 1028 (1978)CrossRefzbMATHADSGoogle Scholar
  58. 58.
    D.N. Page, Phys. Rev. Lett. 71, 1291 (1993)CrossRefzbMATHMathSciNetADSGoogle Scholar
  59. 59.
    S.K. Foong, S. Kanno, Phys. Rev. Lett. 72, 1148 (1994)CrossRefzbMATHMathSciNetADSGoogle Scholar
  60. 60.
    J. Sanchez-Ruiz, Phys. Rev. E 52, 5653 (1995)CrossRefMathSciNetADSGoogle Scholar
  61. 61.
    K. Zyczkowski, H.J. Sommers, J. Phys. A: Math. Gen. 34, 7111 (2001)CrossRefzbMATHMathSciNetADSGoogle Scholar
  62. 62.
    P. Hayden, D.W. Leung, A. Winter, Commun. Math. Phys. 265, 95 (2006)CrossRefzbMATHMathSciNetADSGoogle Scholar
  63. 63.
    O. Giraud, J. Phys. A: Math. Theor. 40, F1053 (2007)CrossRefzbMATHMathSciNetADSGoogle Scholar
  64. 64.
    P. Facchi, U. Marzolino, G. Parisi, S. Pascazio, A. Scardicchio, Phys. Rev. Lett. 101, 050502 (2008)CrossRefMathSciNetADSGoogle Scholar
  65. 65.
    A. De Pasquale, P. Facchi, G. Parisi, S. Pascazio, A. Scardicchio, Phys. Rev. A 81, 052324 (2010)CrossRefADSGoogle Scholar
  66. 66.
    C. Nadal, S.N. Majumdar, M. Vergassola, Phys. Rev. Lett. 104, 110501 (2010)CrossRefADSGoogle Scholar
  67. 67.
    C. Nadal, S.N. Majumdar, M. Vergassola, J. Stat. Phys. 142, 403 (2011)CrossRefzbMATHMathSciNetADSGoogle Scholar
  68. 68.
    A.Y. Kitaev, A.H. Shen, M.N. Vyalyi, Classical and quantum computational computation (AMS, Providence, USA, 2002)Google Scholar
  69. 69.
    G. Toth, J.J. Garcia-Ripoll, Phys. Rev. A 75, 042311 (2007)CrossRefMathSciNetADSGoogle Scholar
  70. 70.
    R.A. Low, PhD Thesis, University of Bristol (2010)Google Scholar
  71. 71.
    M. Leudox, The Concentration of Measure Phenomenon (AMS Monographs, Providence, USA, 2001)Google Scholar
  72. 72.
    J. von Neumann, Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, USA, 1955)Google Scholar
  73. 73.
    E. Schrodinger, Statistical Thermodynamics (Dover Mineola, New York, USA, 1989)Google Scholar
  74. 74.
    H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998)CrossRefzbMATHMathSciNetADSGoogle Scholar
  75. 75.
    S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006)CrossRefMathSciNetADSGoogle Scholar
  76. 76.
    S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 754 (2006)CrossRefGoogle Scholar
  77. 77.
    K. Fujii, Y. Nakata, M. Ohzeki, M. Murao, Phys. Rev. Lett. 110, 120502 (2013)CrossRefADSGoogle Scholar
  78. 78.
    K. Temme, T.J. Osborne, K. Vollbrecht, D. Poulin, F. Verstraete, Nature 471, 87 (2011)CrossRefADSGoogle Scholar
  79. 79.
    A. Riera, C. Gogolin, J. Eisert, Phys. Rev. Lett. 108, 080402 (2012)CrossRefADSGoogle Scholar
  80. 80.
  81. 81.
    N.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  82. 82.
    F. Dupuis, M. Berta, J. Wullschleger, R. Renner, arXiv:1012.6044 (2010)
  83. 83.
    W. Brown, O. Fawzi, arXiv:1307.0632 (2013)

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsLeibniz University HannoverHannoverGermany
  2. 2.Department of Physics, Graduate School of ScienceUniversity of TokyoTokyoJapan
  3. 3.Institute for Nano Quantum Information ElectronicsUniversity of TokyoTokyoJapan

Personalised recommendations