Quantum Google algorithm

Construction and application to complex networks
  • G. D. Paparo
  • M. Müller
  • F. Comellas
  • M. A. Martin-Delgado
Regular Article
Part of the following topical collections:
  1. Focus Point on Quantum information and complexity

Abstract

We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.

References

  1. 1.
    S. Brin, L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998).CrossRefGoogle Scholar
  2. 2.
    L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: Bringing order to the web (1999).Google Scholar
  3. 3.
    A. Arratia, C. Marijuán, arXiv:1105.1595 (2011).
  4. 4.
    B. Georgeot, O. Giraud, D.L. Shepelyansky, Phys. Rev. E 81, 056109 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).Google Scholar
  6. 6.
    A. Galindo, M.A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (ACM, 1996) pp. 212--219.Google Scholar
  8. 8.
    A. Galindo, M.A. Martin-Delgado, Phys. Rev. A 62, 062303 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    G.D. Paparo, V. Dunjko, A. Makmal, M.A. Martin-Delgado, H.J. Briegel, arXiv:1401.4997 (2014).
  10. 10.
    T.D. Ladd et al., Nature 464, 45 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    G.D. Paparo, M. Martin-Delgado, Sci. Rep. 2, 444 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    G.D. Paparo, M. Müller, F. Comellas, M.A. Martin-Delgado, Sci. Rep. 3, 2773 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Vol. 175 (New York, 1984) p. 8.Google Scholar
  14. 14.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    C. Elliott, The DARPA quantum network, in Quantum Communications and Cryptography, edited by A.V. Sergienko (CRC Press, Boca Raton, 2006) Chapt. 4, pp. 83--102.Google Scholar
  16. 16.
    A. Poppe, M. Peev, O. Maurhart, Int. J. Quantum Inf. 6, 209 (2008).CrossRefGoogle Scholar
  17. 17.
    M. Sasaki et al., Opt. Express 19, 10387 (2011).ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    D. Lancho, J. Martinez, D. Elkouss, M. Soto, V. Martin, QKD in standard optical telecommunications networks, in Quantum Communication and Quantum Networking (2010) pp. 142--149.Google Scholar
  20. 20.
    T. Länger, G. Lenhart, New J. Phys. 11, 055051 (2009).CrossRefGoogle Scholar
  21. 21.
    H.J. Kimble, Nature 453, 1023 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    D.S. Wiersma, Science 327, 1333 (2010).CrossRefGoogle Scholar
  23. 23.
    M.-X. Luo, G. Xu, X.-B. Chen, Y.-X. Yang, X. Wang, Sci. Rep. 4, 4571 (2014).ADSGoogle Scholar
  24. 24.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    W. Dür, H.J. Briegel, J. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Gisin, Phys. Rev. A 83, 012318 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    C. Simon et al., Eur. Phys. J. D 58, 1 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    B. Lauritzen et al., Phys. Rev. Lett. 104, 080502 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    A. Acín, J.I. Cirac, M. Lewenstein, Nat. Phys. 3, 256 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Perseguers, J.I. Cirac, A. Acín, M. Lewenstein, J. Wehr, Phys. Rev. A 77, 022308 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    Z.-W. Wei, B.-H. Wang, X.-P. Han, Sci. Rep. 3, 1222 (2013).ADSGoogle Scholar
  33. 33.
    M. Cuquet, J. Calsamiglia, Phys. Rev. Lett. 103, 240503 (2009).ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Cuquet, J. Calsamiglia, Phys. Rev. A 83, 032319 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    D. Watts, S. Strogatz, Nature 393, 440 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999).ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003).ADSCrossRefGoogle Scholar
  39. 39.
    A.-L. Barabási, Z.N. Oltvai, Nat. Rev. Genet. 5, 101 (2004).CrossRefGoogle Scholar
  40. 40.
    A.-L. Barabási, Z. Dezso, E. Ravasz, S.-H. Yook, Z. Oltvai, AIP Conf. Proc. 661, 1 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    M.E. Newman, SIAM Rev. 45, 167 (2003).ADSCrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    M. Newman, Networks: An Introduction (Oxford University Press, Inc., 2010).Google Scholar
  43. 43.
    R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010).Google Scholar
  44. 44.
    Timeline of web search engines --- Wikipedia, the free encyclopedia (2014), http://en.wikipedia.org/w/index.php?title=Timeline_of_web_search_engines&oldid=616361284.
  45. 45.
    M. Marchiori, Comput. Netw. ISDN Syst. 29, 1225 (1997).CrossRefGoogle Scholar
  46. 46.
  47. 47.
    A.N. Langville, C.D. Meyer, Internet Math. 1, 335 (2004).CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    C.D. Meyer, Matrix Analysis and Applied Linear Algebra, Vol. 2 (Siam, 2000).Google Scholar
  49. 49.
    T. Haveliwala, S. Kamvar, The second eigenvalue of the Google matrix, Stanford University Technical Report (2003).Google Scholar
  50. 50.
    M. Szegedy, Quantum speed-up of Markov chain based algorithms, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004 (2004) pp. 32--41.Google Scholar
  51. 51.
    D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Quantum walks on graphs, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (ACM, 2001) pp. 50--59.Google Scholar
  52. 52.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).ADSCrossRefMATHGoogle Scholar
  53. 53.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006).ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    A.-L. Barabási, R. Albert, H. Jeong, Physica A: Stat. Mech. Appl. 281, 69 (2000).ADSCrossRefGoogle Scholar
  55. 55.
    A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).ADSCrossRefGoogle Scholar
  56. 56.
    H. Jeong, P. Mason, A.-L. Barabasi, Z. Oltvai, Nature 411, 41 (2001).ADSCrossRefGoogle Scholar
  57. 57.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000).ADSCrossRefGoogle Scholar
  58. 58.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000).ADSCrossRefGoogle Scholar
  59. 59.
    D.S. Callaway, M.E. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000).ADSCrossRefGoogle Scholar
  60. 60.
    A. Vázquez, Y. Moreno, Phys. Rev. E 67, 015101 (2003).ADSCrossRefGoogle Scholar
  61. 61.
    M. Boguna, D. Krioukov, K. Claffy, Nat. Phys. 5, 74 (2008).CrossRefGoogle Scholar
  62. 62.
    S. Carmi, S. Carter, J. Sun, D. Ben-Avraham, Phys. Rev. Lett. 102, 238702 (2009).ADSCrossRefGoogle Scholar
  63. 63.
    S.H. Lee, P. Holme, Phys. Rev. Lett. 108, 128701 (2012).ADSCrossRefGoogle Scholar
  64. 64.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011).ADSCrossRefGoogle Scholar
  65. 65.
    T. Nepusz, T. Vicsek, Nat. Phys. 8, 568 (2012).CrossRefGoogle Scholar
  66. 66.
    V. Nicosia, R. Criado, M. Romance, G. Russo, V. Latora, Sci. Rep. 2, 218 (2012).ADSCrossRefGoogle Scholar
  67. 67.
    A.-L. Barabási, Philos. Trans. R. Soc. A 371, 20120512 (2013).CrossRefGoogle Scholar
  68. 68.
    A. Reka, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999).ADSCrossRefGoogle Scholar
  69. 69.
    B. Bollobás, C. Borgs, J. Chayes, O. Riordan, Directed scale-free graphs, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2003) pp. 132--139.Google Scholar
  70. 70.
    A. Hagberg, P. Swart, D.S. Chult, Exploring network structure, dynamics, and function using NetworkX Tech. Rep., Los Alamos National Laboratory (LANL) (2008).Google Scholar
  71. 71.
    V. Batagelj, A. Mrvar, Pajek datasets, http://vlado.fmf.uni-lj.si/pub/networks/data (2006).
  72. 72.
    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1551 (2002).ADSCrossRefGoogle Scholar
  73. 73.
    A.-L. Barabási, E. Ravasz, T. Vicsek, Physica A: Stat. Mech. Appl. 299, 559 (2001).ADSCrossRefMATHGoogle Scholar
  74. 74.
    J.D. Noh, Phys. Rev. E 67, 045103 (2003).ADSCrossRefGoogle Scholar
  75. 75.
    F. Comellas, A. Miralles, Physica A: Stat. Mech. Appl. 388, 2227 (2009).ADSCrossRefMathSciNetGoogle Scholar
  76. 76.
    F. Comellas, A. Miralles, J. Phys. A: Math. Theor. 42, 425001 (2009).ADSCrossRefMathSciNetGoogle Scholar
  77. 77.
    H.K. Lo, T. Spiller, S. Popescu, Introduction to Quantum Computation and Information (World Scientific Publishing Company, 1998).Google Scholar
  78. 78.
    D. Donato, L. Laura, S. Leonardi, S. Millozzi, Eur. Phys. J. B 38, 239 (2004).ADSCrossRefGoogle Scholar
  79. 79.
    G. Pandurangan, P. Raghavan, E. Upfal, Using PageRank to Characterize Web Structure, in Computing and Combinatorics, Vol. 2387 (Springer, 2002) pp. 330--339.Google Scholar
  80. 80.
    F. de Lima Marquezino, R. Portugal, S. Boettcher, Phys. Rev. A 87, 012329 (2013).ADSCrossRefGoogle Scholar
  81. 81.
    F. Caruso, arXiv:1312.1832 (2013).
  82. 82.
    A. Makmal, M. Zhu, D. Manzano, M. Tiersch, H.J. Briegel, arXiv:1309.5253 (2013).
  83. 83.
    S.E. Venegas-Andraca, Quantum Inf. Process. 11, 1015 (2012).CrossRefMATHMathSciNetGoogle Scholar
  84. 84.
    M. Faccin, T. Johnson, J. Biamonte, S. Kais, P. Migdał, Phys. Rev. X 3, 041007 (2013).Google Scholar
  85. 85.
    B. Kollár, J. Novotny, T. Kiss, I. Jex, arXiv:1404.4509 (2014).
  86. 86.
    J.D. Whitfield, Reflections in Hilbert Space II: Szegedy's Scheme for Markov Chain Quantization (2012).Google Scholar
  87. 87.
    S. Garnerone, P. Zanardi, D.A. Lidar, Phys. Rev. Lett. 108, 230506 (2012).ADSCrossRefGoogle Scholar
  88. 88.
    S. Garnerone, Phys. Rev. A 86, 032342 (2012).ADSCrossRefGoogle Scholar
  89. 89.
    E. Sánchez-Burillo, J. Duch, J. Gómez-Gardeñes, D. Zueco, Sci. Rep. 2, 605 (2012).CrossRefGoogle Scholar
  90. 90.
    F. Verstraete, M.M. Wolf, J.I. Cirac, Nat. Phys. 5, 633 (2009).CrossRefGoogle Scholar
  91. 91.
    S. Diehl et al., Nat. Phys. 4, 878 (2008).CrossRefGoogle Scholar
  92. 92.
    A.M. Childs, D. Gosset, Z. Webb, Science 339, 791 (2013).ADSCrossRefMathSciNetGoogle Scholar
  93. 93.
    A.M. Childs, Phys. Rev. Lett. 102, 180501 (2009).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • G. D. Paparo
    • 1
  • M. Müller
    • 1
  • F. Comellas
    • 2
  • M. A. Martin-Delgado
    • 1
  1. 1.Departamento de Física Teórica IUniversidad ComplutenseMadridSpain
  2. 2.Departament de Matemàtica Aplicada IVUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations