On the origins and the historical roots of the Higgs boson research from a bibliometric perspective

Regular Article

Abstract

The subject of our present paper is the analysis of the origins or historical roots of the Higgs boson research from a bibliometric perspective, using a segmented regression analysis in combination with a method named reference publication year spectroscopy (RPYS). Our analysis is based on the references cited in the Higgs boson publications published since 1974. The objective of our analysis consists of identifying specific individual publications in the Higgs boson research context to which the scientific community frequently had referred to. We are interested in seminal works which contributed to a high extent to the discovery of the Higgs boson. Our results show that researchers in the Higgs boson field preferably refer to more recently published papers —particularly papers published since the beginning of the sixties. For example, our analysis reveals seven major contributions which appeared within the sixties: Englert and Brout (1964), Higgs (1964, 2 papers), and Guralnik et al. (1964) on the Higgs mechanism as well as Glashow (1961), Weinberg (1967), and Salam (1968) on the unification of weak and electromagnetic interaction. Even if the Nobel Prize award highlights the outstanding importance of the work of Peter Higgs and Francois Englert, bibliometrics offer the additional possibility of getting hints to other publications in this research field (especially to historical publications), which are of vital importance from the expert point of view.

References

  1. 1.
  2. 2.
    A. Cho, Science 338, 1524 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    L. Lederman, D. Teresi, The God particle: If the universe is the answer, what is the question? (Houghton Mifflin, Boston, 1993).Google Scholar
  4. 4.
  5. 5.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) DOI:10.1103/PhysRevLett.13.321.ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Higgs, Phys. Lett. 12, 132 (1964) DOI:10.1016/0031-9163(64)91136-9.ADSCrossRefGoogle Scholar
  7. 7.
    P. Higgs, Phys. Rev. Lett. 13, 508 (1964) DOI:10.1103/PhysRevLett.13.508.ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964) DOI:10.1103/PhysRevLett.13.585.ADSCrossRefGoogle Scholar
  9. 9.
    F. Close, The Infinity Puzzle. How The Quest to Understand Quantum Field Theory Led to Extraordinary Science, High Politics, and The World’s Most Expensive Experiment (Oxford University Press, Oxford, 2011).Google Scholar
  10. 10.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967) DOI:10.1103/PhysRevLett.19.1264.ADSCrossRefGoogle Scholar
  11. 11.
    A. Salam, in Elementary Particle Physics (Nobel Symposium No. 8), edited by N. Svartholm (Wiley-Interscience, London, 1968) pp. 367--377.Google Scholar
  12. 12.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961) DOI:10.1016/0029-5582(61)90469-2.CrossRefGoogle Scholar
  13. 13.
    L. Bornmann, W. Marx, J. Informetrics 7, 84 (2013) DOI:10.1016/j.joi.2012.09.003.CrossRefGoogle Scholar
  14. 14.
    W. Marx, L. Bornmann, A. Barth, L. Leydesdorff, J. Assoc. Inf. Sci. Technol. 65, 751 (2014) DOI:10.1002/asi.23089.CrossRefGoogle Scholar
  15. 15.
    J. Bleck-Neuhaus, Elementare Teilchen: Von den Atomen über das Standard-Modell bis zum Higgs-Boson, 2nd edition (Springer Spektrum, Heidelberg, 2013).Google Scholar
  16. 16.
    W. Marx, J. Assoc. Inf. Sci. Technol. 62, 433 (2011) DOI:10.1002/asi.21479.Google Scholar
  17. 17.
    E. Brusilovskiy, The piecewise regression model as a response modeling tool, in Proceedings of the 17th Conference of North Eastern SAS User Group (NESUG) in Baltimore, www.nesug.org/proceedings/ (2004).
  18. 18.
    P.M. Lerman, J. R. Stat. Soc. Ser. C (Appl. Stat.) 29, 77 (1980).Google Scholar
  19. 19.
    V.E. McGee, W.T. Carleton, J. Am. Stat. Ass. 65, 1109 (1970) DOI:10.2307/2284278.CrossRefGoogle Scholar
  20. 20.
    U.H. Sauter, R. Mutz, B.D. Munro, Wood Fiber Sci. 31, 416 (1999).Google Scholar
  21. 21.
    X. Shuai, Z. Zhou, R. Yost, J. Agr. Biol. Environ. Stat. 8, 240 (2003) DOI:10.1198/1085711031580.CrossRefGoogle Scholar
  22. 22.
    N. Draper, H. Smith, Applied Regression, 3rd edition (Wiley, New York, 1998).Google Scholar
  23. 23.
    SAS Institute Inc. SAS/STAT 9.3 User’s Guide (SAS Institute Inc. Cary, NC: 2011) p. 5146--5150.Google Scholar
  24. 24.
    W. Marx, L. Bornmann, M. Cardona, J. Assoc. Inf. Sci. Technol. 61, 2061 (2010) DOI:10.1002/asi.21377.CrossRefGoogle Scholar
  25. 25.
    A.F.J. Van Raan, Scientometrics 47, 347 (2000) DOI:10.1023/A:1005647328460.CrossRefGoogle Scholar
  26. 26.
    K.W. McCain, J. Assoc. Inf. Sci. Technol. 63, 2129 (2012) DOI:10.1002/asi.22719.CrossRefGoogle Scholar
  27. 27.
    C.F. Von Weizsäcker, Z. Phys. 88, 612 (1934) DOI:10.1007/BF01333110.ADSCrossRefGoogle Scholar
  28. 28.
    E.J. Williams, Phys. Rev. 45, 729 (1934) DOI:10.1103/PhysRev.45.729.ADSCrossRefGoogle Scholar
  29. 29.
    F. Bloch, Phys. Rev. 52, 54 (1937) DOI:10.1103/PhysRev.52.54.ADSCrossRefGoogle Scholar
  30. 30.
    L.D. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948).Google Scholar
  31. 31.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961) DOI:10.1103/PhysRev.122.345.ADSCrossRefGoogle Scholar
  32. 32.
    J. Goldstone, Il Nuovo Cimento 19, 154 (1961) DOI:10.1007/BF02812722.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    P. Higgs, Phys. Rev. 145, 1156 (1966) DOI:10.1103/PhysRev.145.1156.ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    T.W.B. Kibble, Phys. Rev. 155, 1554 (1967) DOI:10.1103/PhysRev.155.1554.ADSCrossRefGoogle Scholar
  35. 35.
    A. Salam, J.C. Ward, Phys. Lett. 13, 168 (1964) DOI:10.1016/0031-9163(64)90711-5.ADSCrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Nobel Lecture, The Nobel Prize in Physics 1979, nobelprize.org, Nobel Media AB 2013, Web 26 September 2013,http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/ (1979).
  37. 37.
    G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972) DOI:10.1016/0550-3213(72)90279-9.ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Nobel Lecture, The Nobel Prize in Physics 1999. nobelprize.org, Nobel Media AB 2013, Web 26 September 2013,http://www.nobelprize.org/nobel_prizes/physics/laureates/1999/ (1999).
  39. 39.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) DOI:10.1016/0370-1573(84)90008-5.ADSCrossRefGoogle Scholar
  40. 40.
    H.E. Haber, Phys. Rep. 117, 75 (1985) DOI:10.1016/0370-1573(85)90051-1.ADSCrossRefGoogle Scholar
  41. 41.
    L. Bornmann, H.-D. Daniel, J. Document 64, 45 (2008) DOI:10.1108/00220410810844150.CrossRefGoogle Scholar
  42. 42.
    J. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976) DOI:10.1016/0550-3213(76)90184-X.ADSCrossRefGoogle Scholar
  43. 43.
    B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977) DOI:10.1103/PhysRevD.16.1519.ADSCrossRefGoogle Scholar
  44. 44.
    J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986) DOI:10.1016/0550-3213(86)90340-8.ADSCrossRefGoogle Scholar
  45. 45.
    P.W. Anderson, Phys. Rev. 130, 439 (1963) DOI:10.1103/PhysRev.130.439.ADSCrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    H.D. White, K. McCain, J. Assoc. Inf. Sci. Technol. 49, 327 (1998).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.FIZ KarlsruheEggenstein-LeopoldshafenGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany
  3. 3.Administrative Headquarters of the Max Planck SocietyDivision for Science and Innovation StudiesMunichGermany
  4. 4.Professorship for Social Psychology and Research on Higher Education, ETH ZurichZurichSwitzerland

Personalised recommendations