Advertisement

New kinetic energy operator for variable mass systems

  • M. VubangsiEmail author
  • M. Tchoffo
  • L. C. Fai
Regular Article

Abstract.

We have derived a new kinetic energy operator for studying variable mass systems. Our operator is dependent on the space deformation profile \( \mu(x)\) subject to the order parameter \( \varsigma\) . At zeroth order, we recover the standard one-dimensional kinetic energy operator for a constant mass system while, for \( \varsigma\geq 1\) , the operator is interpreted as describing a system endowed with a position-dependent effective mass.

Keywords

Momentum Operator Darboux Transformation Translation Operator Space Deformation Kinetic Energy Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Quesne, Ann. Phys. 321, 1221 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    K. Young, Phys. Rev. B 39, 13434 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    G.L. Herling, M.L. Rustgi, J. Appl. Phys. 71, 796 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Peter, K. Navaneethakrishnan, Physica E 40, 2747 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    O. von Roos, Phys. Rev. B 27, 7547 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    L. Dekar, L. Chetouani, T.F. Hammann, Phys. Rev. A 59, 107 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S.-H. Dong, M. Lozada-Cassou, Phys. Lett. A 337, 313 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    B. Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 38, 2929 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    T. Tanaka, J. Phys. A: Math. Gen. 39, 219 (2006)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Ganguly, L.M. Nieto, J. Phys. A: Math. Theor. 40, 7265 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    B. Midya, B. Roy, R. Roychoudhury, J. Math. Phys. 51, 022109 (2010)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    C. Tezcan, R. Sever, J. Math. Chem. 42, 387 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    R.A. Kraenkel, M. Senthilvelan, J. Phys. A: Math. Theor. 42, 415303 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Koç, S. Sayın, J. Phys. A: Math. Theor. 43, 455203 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    D.J. BenDaniel, C.B. Duke, Phys. Rev. 152, 683 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    T. Gora, F. Williams, Phys. Rev. 177, 1179 (1969)ADSCrossRefGoogle Scholar
  19. 19.
    Q.-G. Zhu, H. Kroemer, Phys. Rev. B 27, 3518 (1983)ADSGoogle Scholar
  20. 20.
    T.L. Li, K.J. Kuhn, Phys. Rev. B 47, 12760 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Richard A. Morrow, Kenneth R. Brownstein, Phys. Rev. B 30, 678 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    O. Mustafa, S.H. Mazharimousavi, Phys. Lett. A 373, 325 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Andrade Jr., Phys. Rev. A 84, 05010(R) (2011)CrossRefGoogle Scholar
  25. 25.
    S. Habib Mazharimousavi, Phys. Rev. A 85, 034102 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Vubangsi, M. Tchoffo, L.C. Fai, Phys. Scr. 89, 025101 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S. Rajashabala, K. Navaneethakrishnan, Mod. Phys. Lett. B 20, 1529 (2006)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mesoscopic and Multilayer Structures Laboratory (MMLS), Department of Physics, Faculty of ScienceUniversity of DschangWest RegionCameroon
  2. 2.Department of Physics, Higher Teacher’s Training CollegeUniversity of BamendaNorth West RegionCameroon

Personalised recommendations