Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form

  • S. T. KingniEmail author
  • S. Jafari
  • H. Simo
  • P. Woafo
Regular Article


This paper proposes a three-dimensional chaotic autonomous system with only one stable equilibrium. This system belongs to a newly introduced category of chaotic systems with hidden attractors. The nonlinear dynamics of the proposed chaotic system is described through numerical simulations which include phase portraits, bifurcation diagrams and new cost function for parameter estimation of chaotic flows. The coexistence of a stable equilibrium point with a strange attractor is found in the proposed system for specific parameters values. The physical existence of the chaotic behavior found in the proposed system is verified by using the Orcard-PSpice software. A good qualitative agreement is shown between the simulations and the experimental results. Based on the Routh-Hurwitz conditions and for a specific choice of linear controllers, it is shown that the proposed chaotic system is controlled to its equilibrium point. Chaos synchronization of an identical proposed system is achieved by using the unidirectional linear and nonlinear error feedback coupling. Finally, the fractional-order form of the proposed system is studied by using the stability theory of fractional-order systems and numerical simulations. A necessary condition for the commensurate fractional order of this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than three.


Equilibrium Point Lyapunov Exponent Chaotic System Fractional Order Phase Portrait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Phys. Lett. A 377, 699 (2013).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Z. Wei, Phys. Lett. A 376, 102 (2011).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    X. Wang, G. Chen, Commun. Nonlinear Sci. Numer. Simulat. 17, 1264 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    Z. Wei, Q. Yang, Nonlinear Dyn. 68, 543 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M. Molaie, S. Jafari, J.C. Sprott, R.H.G.S. Mohammad, Int. J. Bifurcation Chaos 23, 13501888 (2013).CrossRefGoogle Scholar
  6. 6.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Jafari, J.C. Sprott, Chaos Solitons Fractals 378, 79 (2013).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    C. Li, J.C. Sprott, Phys. Lett. A 57, 178 (2014).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    X. Wang, G. Chen, Nonlinear Dyn. 71, 429 (2013).CrossRefGoogle Scholar
  10. 10.
    V. Sundarapandian, I. Pehlivan, Math. Comput. Model. 55, 1904 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    S.T. Kingni, L. Keuninckx, P. Woafo, G. Van der Sande, J. Danckaert, Nonlinear Dyn. 73, 1111 (2013).CrossRefzbMATHGoogle Scholar
  12. 12.
    G.A. Leonov, N.V. Kuznetsov, O.A. Kuznetsova, S.M. Seledzhi, V.I. Vagaitsev, Trans. Control Syst. 6, 54 (2011).Google Scholar
  13. 13.
    G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Physica D 241, 1482 (2012).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurcation Chaos 23, 1330002 (2013).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    G.A. Leonov, N.V. Kuznetsov, Adv. Intell. Syst. Comput. 210, 5 (2013).CrossRefGoogle Scholar
  16. 16.
    G.A. Leonov, M.A. Kiseleva, N.V. Kuznetsov, P. Neittaanmäki, J. Appl. Nonlinear Dyn. 2, 83 (2013).Google Scholar
  17. 17.
    N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Lect. Notes Electri. Eng. 174, 149 (2013).CrossRefGoogle Scholar
  18. 18.
    V.O. Bragin, V.I. Vagaitsev, N.V. Kuznetsov, G.A. Leonov, J. Comput. Syst. Sci. Int. 50, 511 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    E. Ahmed, A.M.A. El-Sayed, A.A. Hala, El-Saka, Phys. Lett. A 358, 1 (2006).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    M.S. Tavazoei, M. Haeri, Physica D 237, 2628 (2008).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Z. Wang, Y. Sun, G. Qi, B.J.V. Wyk, Nonlinear Dyn. 62, 139 (2010).CrossRefzbMATHGoogle Scholar
  22. 22.
    K. Diethelm, N.J. Ford, D. Freed, Nonlinear Dyn. 29, 3 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    W. Deng, J. Comput. Appl. Math. 206, 174 (2007).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    R. Caponetto, R. Dongola, L. Fortuna, I. Petráš, Fractional order system: modelling and control applications, in World Scientific Series on Nonlinear Science Series A, Vol. 72 (World Scientific, 2010).Google Scholar
  25. 25.
    S. Mukhopadhyay, S. Banerjee, Expert Syst. Appl. 39, 917 (2012).CrossRefGoogle Scholar
  26. 26.
    R. Konnur, Phys. Lett. A 346, 275 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    J. Sun, J. Zhao, X. Wu, W. Fang, Y. Cai, W. Xu, Phys. Lett. A 374, 2816 (2010).ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Y. Tang, X. Guan, Chaos Solitons Fractals 40, 1391 (2009).ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    L. Yuan, Q. Yang, Commun. Nonlinear Sci. Numer. Simulat. 17, 305 (2012).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    C. Li, J. Zhou, J. Xiao, H. Xiao, Chaos Solitons Fractals 45, 539 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    R.C. Hilborn, Chaos and nonlinear dynamics: An introduction for scientists and engineers, 2nd edition (Oxford University Press, New York, 2001).Google Scholar
  32. 32.
    S. Jafari, S.M.R. Hashemi Golpayegani, A.H. Jafari, S. Gharibzadeh, J. Neuropsychiatry Clin. Neurosci. 25, E19 (2013).CrossRefGoogle Scholar
  33. 33.
    S. Jafari, S.M.R.H. Golpayegani, A.H. Jafari, S. Gharibzadeh, Int. J. Gen. Syst. 41, 329 (2012).CrossRefzbMATHGoogle Scholar
  34. 34.
    S. Jafari, S.M.R. Hashemi Golpayegani, M.R. Darabad, Commun. Nonlinear Sci. Numer. Simulat. 18, 811 (2013).ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    S. Jafari, S.M.R.H. Golpayegani, A. Daliri, Int. J. Comput. Math. 90, 903 (2013).CrossRefzbMATHGoogle Scholar
  36. 36.
    H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, 1997).Google Scholar
  37. 37.
    I. Grigorenko, E. Grigorenko, Phys. Rev. Lett. 91, 034101 (2003).ADSCrossRefGoogle Scholar
  38. 38.
    J.G. Lu, Phys. Lett. A 354, 305 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    VD. Gejji, S. Bhalekar, Comput. Math. Appl. 59, 1117 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    S.-P. Wang, S.-K. Lao, H.-K. Chen, J.-H. Chen, S.-Y. Chen, Int. J. Bifurcation Chaos 23, 1350030 (2013).ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    A.E. Matouk, Commun. Nonlinear Sci. Numerical Simulat. 16, 975 (2011).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    G.S.M. Ngueuteu, P. Woafo, Mech. Res. Commun. 46, 20 (2012).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes (LaMSEBP), Department of Physics, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations