# Models of universe with a polytropic equation of state: I. The early universe

• Pierre-Henri Chavanis
Regular Article

## Abstract.

We construct models of universe with a generalized equation of state $$p=(\alpha \rho +k\rho^{1+1/n})c^{2}$$ having a linear component and a polytropic component. Concerning the linear equation of state $$p=\alpha\rho c^{2}$$, we assume $$-1\le\alpha\le 1$$. This equation of state describes radiation ( $$\alpha=1/3$$ or pressureless matter ($$\alpha = 0$$. Concerning the polytropic equation of state $$p=k\rho^{1+1/n}c^{2}$$, we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0 . In that case, the polytropic component dominates the linear component in the early universe where the density is high. For $$\alpha = 1/3$$, n = 1 and $$k=-4/(3\rho_{P})$$, where $$\rho_{P}=5.16 10^{99}$$ g/m3 is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0 , its size is less than the Planck length $$l_{P}=1.62 10^{-35}$$ m. In this model, the universe undergoes an inflationary expansion with the Planck density $$\rho_{P}=5.16 10^{99}$$ g/m3 (vacuum energy) that brings it from the Planck size $$l_{P}=1.62 10^{-35}$$ m at t = 0 to a size $$a_{1}=2.61 10^{-6}$$ m at $$t_{1}=1.25 10^{-42}$$ s (corresponding to about 23.3 Planck times $$t_{P}=5.39 10^{-44}$$ s). For $$\alpha = 1/3$$, n = 1 and $$k=4/(3\rho_{P})$$, we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a 1 . Actually, this universe becomes physical at a time $$t_{i}=8.32 10^{-45}$$ s from which the velocity of sound is less than the speed of light. When $$a\gg a_{1}$$, the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant ℏ plays the role of finite-size effects (the standard Big Bang theory is recovered for ℏ = 0 .

## Keywords

Dark Matter Dark Energy Early Universe Vacuum Energy Friedmann Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
A. Friedmann, G. Lema\^ıtre, Essais de Cosmologie. Précédé de L'Invention du Big Bang par J.P. Luminet (Source du savoir Seuil, 1997)Google Scholar
2. 2.
H. Nussbaumer, L. Bieri, Discovering the Expanding Universe (Cambridge, 2009)Google Scholar
3. 3.
4. 4.
G.E. Lema\^ıtre, in The Cosmological Constant, edited by P.A. Schlipp (Open Court, La Salle, Illinois, 1997)Google Scholar
5. 5.
W. de Sitter, Proc. Akad. Wetensch. Amsterdam 19, 1217 (1917)
6. 6.
W. de Sitter, Mon. Not. R. Astron. Soc. 78, 3 (1917)
7. 7.
H.P. Robertson, Rev. Mod. Phys. 5, 62 (1933)
8. 8.
A. Friedmann, Z. Phys. 10, 377 (1922)
9. 9.
A. Friedmann, Z. Phys. 21, 326 (1924)
10. 10.
A. Einstein, Z. Phys. 11, 326 (1922)
11. 11.
A. Einstein, Z. Phys. 16, 228 (1923)
12. 12.
K. Lanczos, Phys. Z. 23, 539 (1922)
13. 13.
H. Weyl, Phys. Z. 24, 230 (1923)
14. 14.
G. Lema\^itre, J. Math. Phys. (M.I.T.) 4, 188 (1925)
15. 15.
G. Lema\^itre, Ann. Soc. Sci. Bruxelles 47, 49 (1927)
16. 16.
G. Strömberg, Astrophys. J. 61, 353 (1925)
17. 17.
E. Hubble, Proc. Natl. Acad. Sci. 15, 168 (1929)
18. 18.
G. Lema\^itre, Mon. Not. R. Astron. Soc. 91, 483 (1931)
19. 19.
H.P. Robertson, Philos. Mag. 5, 835 (1928)
20. 20.
H.P. Robertson, Proc. Natl. Acad. Sci. 15, 822 (1929)
21. 21.
W. de Sitter, The Observatory 53, 37 (1930)Google Scholar
22. 22.
A.S. Eddington, Mon. Not. R. Astron. Soc. 90, 668 (1930)
23. 23.
W. de Sitter, Bull. Astron. Inst. Neth. 185, 157 (1930)
24. 24.
W. de Sitter, Bull. Astron. Inst. Neth. 193, 211 (1930)
25. 25.
26. 26.
A. Einstein, W. de Sitter, Proc. Natl. Acad. Sci. 18, 213 (1932)
27. 27.
G. Lema\^itre, Mon. Not. R. Astron. Soc. 91, 490 (1931)
28. 28.
A.S. Eddington, Nature 127, 447 (1931)
29. 29.
G. Lema\^itre, Rev. Quest. Sci. 20, 391 (1931)Google Scholar
30. 30.
G. Lema\^itre, Ann. Soc. Sci. Bruxelles 53, 51 (1933)
31. 31.
F. Hoyle, Mon. Not. R. Astron. Soc. 108, 372 (1948)
32. 32.
A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)
33. 33.
G. Gamow, Phys. Rev. 74, 505 (1948)
34. 34.
35. 35.
R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Astrophys. J. 142, 414 (1965)
36. 36.
P.H. Chavanis, Phys. Rev. D 84, 043531 (2011)
37. 37.
G. Lema\^itre, Nature 127, 706 (1931)
38. 38.
A.H. Guth, Phys. Rev. D 23, 347 (1981)
39. 39.
A.D. Linde, Phys. Lett. B 108, 389 (1982)
40. 40.
A. Albrecht, P.J. Steinhardt, M.S. Turner, F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982)
41. 41.
A. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990)Google Scholar
42. 42.
J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, 2008)Google Scholar
43. 43.
P.H. Chavanis, Astron. Astrophys. 537, A127 (2012)
44. 44.
P.H. Chavanis, arXiv:1208.0801 (2012)
45. 45.
P.H. Chavanis, arXiv:1208.1185 (2012)
46. 46.
A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)
47. 47.
N. Bilic, G.B. Tuper, R. Viollier, Phys. Lett. B 535, 17 (2002)
48. 48.
J.S. Fabris, S.V. Goncalves, P.E. de Souza, Gen. Relativ. Gravit. 34, 53 (2002)
49. 49.
M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)
50. 50.
V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003)
51. 51.
M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519 (2004)
52. 52.
S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, 1972)Google Scholar
53. 53.
E.A. Milne, Q. J. Math. 5, 64 (1934)
54. 54.
W.H. McCrea, E.A. Milne, Q. J. Math. 5, 73 (1934)
55. 55.
W.H. McCrea, Proc. R. Soc. London. 206, 562 (1951)
56. 56.
E.R. Harrison, Ann. Phys. (N.Y.) 35, 437 (1965)
57. 57.
J.A.S. Lima, V. Zanchin, R. Brandenberger, Mon. Not. R. Astron. Soc. 291, L1 (1997)
58. 58.
G. Lema\^itre, Proc. Natl. Acad. Sci. 20, 12 (1934)
59. 59.
P.J.E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, 1980)Google Scholar
60. 60.
A.D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967)
61. 61.
Ya.B. Zeldovich, Sov. Phys. Uspek. 11, 381 (1968)
62. 62.
S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)
63. 63.
E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)
64. 64.
T. Padmanabhan, Theoretical Astrophysics, Vol. III: Galaxies and Cosmology (Cambridge University Press, 2002)Google Scholar
65. 65.
J.P. Luminet, Gen. Relativ. Gravit. 43, 2911 (2011)
66. 66.
F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)