Advertisement

Models of universe with a polytropic equation of state: I. The early universe

  • Pierre-Henri Chavanis
Regular Article

Abstract.

We construct models of universe with a generalized equation of state \(p=(\alpha \rho +k\rho^{1+1/n})c^{2}\) having a linear component and a polytropic component. Concerning the linear equation of state \( p=\alpha\rho c^{2}\), we assume \( -1\le\alpha\le 1\). This equation of state describes radiation ( \( \alpha=1/3\) or pressureless matter (\( \alpha = 0\). Concerning the polytropic equation of state \( p=k\rho^{1+1/n}c^{2}\), we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0 . In that case, the polytropic component dominates the linear component in the early universe where the density is high. For \( \alpha = 1/3\), n = 1 and \( k=-4/(3\rho_{P})\), where \( \rho_{P}=5.16 10^{99}\) g/m3 is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0 , its size is less than the Planck length \( l_{P}=1.62 10^{-35}\) m. In this model, the universe undergoes an inflationary expansion with the Planck density \( \rho_{P}=5.16 10^{99}\) g/m3 (vacuum energy) that brings it from the Planck size \( l_{P}=1.62 10^{-35}\) m at t = 0 to a size \( a_{1}=2.61 10^{-6}\) m at \( t_{1}=1.25 10^{-42}\) s (corresponding to about 23.3 Planck times \( t_{P}=5.39 10^{-44}\) s). For \( \alpha = 1/3\), n = 1 and \( k=4/(3\rho_{P})\), we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a 1 . Actually, this universe becomes physical at a time \( t_{i}=8.32 10^{-45}\) s from which the velocity of sound is less than the speed of light. When \( a\gg a_{1}\), the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant ℏ plays the role of finite-size effects (the standard Big Bang theory is recovered for ℏ = 0 .

Keywords

Dark Matter Dark Energy Early Universe Vacuum Energy Friedmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Friedmann, G. Lema\^ıtre, Essais de Cosmologie. Précédé de L'Invention du Big Bang par J.P. Luminet (Source du savoir Seuil, 1997)Google Scholar
  2. 2.
    H. Nussbaumer, L. Bieri, Discovering the Expanding Universe (Cambridge, 2009)Google Scholar
  3. 3.
    A. Einstein, Sitz. König. Preu. Akad. Wiss., 142 (1917)Google Scholar
  4. 4.
    G.E. Lema\^ıtre, in The Cosmological Constant, edited by P.A. Schlipp (Open Court, La Salle, Illinois, 1997)Google Scholar
  5. 5.
    W. de Sitter, Proc. Akad. Wetensch. Amsterdam 19, 1217 (1917)ADSGoogle Scholar
  6. 6.
    W. de Sitter, Mon. Not. R. Astron. Soc. 78, 3 (1917)ADSGoogle Scholar
  7. 7.
    H.P. Robertson, Rev. Mod. Phys. 5, 62 (1933)ADSCrossRefGoogle Scholar
  8. 8.
    A. Friedmann, Z. Phys. 10, 377 (1922)ADSCrossRefGoogle Scholar
  9. 9.
    A. Friedmann, Z. Phys. 21, 326 (1924)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Einstein, Z. Phys. 11, 326 (1922)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Einstein, Z. Phys. 16, 228 (1923)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    K. Lanczos, Phys. Z. 23, 539 (1922)zbMATHGoogle Scholar
  13. 13.
    H. Weyl, Phys. Z. 24, 230 (1923)zbMATHGoogle Scholar
  14. 14.
    G. Lema\^itre, J. Math. Phys. (M.I.T.) 4, 188 (1925)zbMATHGoogle Scholar
  15. 15.
    G. Lema\^itre, Ann. Soc. Sci. Bruxelles 47, 49 (1927)ADSGoogle Scholar
  16. 16.
    G. Strömberg, Astrophys. J. 61, 353 (1925)ADSCrossRefGoogle Scholar
  17. 17.
    E. Hubble, Proc. Natl. Acad. Sci. 15, 168 (1929)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    G. Lema\^itre, Mon. Not. R. Astron. Soc. 91, 483 (1931)ADSzbMATHGoogle Scholar
  19. 19.
    H.P. Robertson, Philos. Mag. 5, 835 (1928)zbMATHGoogle Scholar
  20. 20.
    H.P. Robertson, Proc. Natl. Acad. Sci. 15, 822 (1929)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    W. de Sitter, The Observatory 53, 37 (1930)Google Scholar
  22. 22.
    A.S. Eddington, Mon. Not. R. Astron. Soc. 90, 668 (1930)ADSzbMATHGoogle Scholar
  23. 23.
    W. de Sitter, Bull. Astron. Inst. Neth. 185, 157 (1930)ADSGoogle Scholar
  24. 24.
    W. de Sitter, Bull. Astron. Inst. Neth. 193, 211 (1930)ADSGoogle Scholar
  25. 25.
    A. Einstein, Sitz. König. Preu. Akad. Wiss. 235, (1931)Google Scholar
  26. 26.
    A. Einstein, W. de Sitter, Proc. Natl. Acad. Sci. 18, 213 (1932)ADSCrossRefGoogle Scholar
  27. 27.
    G. Lema\^itre, Mon. Not. R. Astron. Soc. 91, 490 (1931)ADSzbMATHGoogle Scholar
  28. 28.
    A.S. Eddington, Nature 127, 447 (1931)ADSCrossRefGoogle Scholar
  29. 29.
    G. Lema\^itre, Rev. Quest. Sci. 20, 391 (1931)Google Scholar
  30. 30.
    G. Lema\^itre, Ann. Soc. Sci. Bruxelles 53, 51 (1933)ADSGoogle Scholar
  31. 31.
    F. Hoyle, Mon. Not. R. Astron. Soc. 108, 372 (1948)ADSzbMATHGoogle Scholar
  32. 32.
    A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    G. Gamow, Phys. Rev. 74, 505 (1948)ADSCrossRefGoogle Scholar
  34. 34.
    A.G. Doroshkevich, I.D. Novikov, Dokl. Akad. Nauk 154, 809 (1964)Google Scholar
  35. 35.
    R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Astrophys. J. 142, 414 (1965)ADSCrossRefGoogle Scholar
  36. 36.
    P.H. Chavanis, Phys. Rev. D 84, 043531 (2011)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    G. Lema\^itre, Nature 127, 706 (1931)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    A.H. Guth, Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Linde, Phys. Lett. B 108, 389 (1982)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    A. Albrecht, P.J. Steinhardt, M.S. Turner, F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982)ADSCrossRefGoogle Scholar
  41. 41.
    A. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990)Google Scholar
  42. 42.
    J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, 2008)Google Scholar
  43. 43.
    P.H. Chavanis, Astron. Astrophys. 537, A127 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    P.H. Chavanis, arXiv:1208.0801 (2012)
  45. 45.
    P.H. Chavanis, arXiv:1208.1185 (2012)
  46. 46.
    A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    N. Bilic, G.B. Tuper, R. Viollier, Phys. Lett. B 535, 17 (2002)ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    J.S. Fabris, S.V. Goncalves, P.E. de Souza, Gen. Relativ. Gravit. 34, 53 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, 1972)Google Scholar
  53. 53.
    E.A. Milne, Q. J. Math. 5, 64 (1934)ADSCrossRefGoogle Scholar
  54. 54.
    W.H. McCrea, E.A. Milne, Q. J. Math. 5, 73 (1934)ADSCrossRefGoogle Scholar
  55. 55.
    W.H. McCrea, Proc. R. Soc. London. 206, 562 (1951)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    E.R. Harrison, Ann. Phys. (N.Y.) 35, 437 (1965)ADSCrossRefGoogle Scholar
  57. 57.
    J.A.S. Lima, V. Zanchin, R. Brandenberger, Mon. Not. R. Astron. Soc. 291, L1 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    G. Lema\^itre, Proc. Natl. Acad. Sci. 20, 12 (1934)ADSCrossRefGoogle Scholar
  59. 59.
    P.J.E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, 1980)Google Scholar
  60. 60.
    A.D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967)ADSGoogle Scholar
  61. 61.
    Ya.B. Zeldovich, Sov. Phys. Uspek. 11, 381 (1968)ADSCrossRefGoogle Scholar
  62. 62.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    T. Padmanabhan, Theoretical Astrophysics, Vol. III: Galaxies and Cosmology (Cambridge University Press, 2002)Google Scholar
  65. 65.
    J.P. Luminet, Gen. Relativ. Gravit. 43, 2911 (2011)ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique (IRSAMC), CNRS and UPSUniversité de ToulouseToulouseFrance

Personalised recommendations