Interacting Ricci dark energy in scalar Gauss-Bonnet gravity

  • Surajit Chattopadhyay
  • Antonio Pasqua
  • Ayman A. Aly
Regular Article
  • 69 Downloads

Abstract.

This paper reports a study on the cosmological application of interacting Ricci Dark Energy (RDE) density in the scalar Gauss-Bonnet framework. The interacting holographic RDE model has been employed to obtain the equation of state (EoS) in a spatially flat universe. The main results of this paper are that the reconstructed potential of scalar Gauss-Bonnet gravity for the interacting RDE model decays with the evolution of the universe. However, it is an increasing function of the scalar field \( \phi\) . Both the strong and weak energy conditions are violated. A phantom-like behavior of the EoS parameter has been obtained. The effective EoS parameter \( \omega_{eff}\) stays below -1 but tends to -1 with the evolution of the universe. However, it cannot cross the phantom boundary. Finally, the interacting RDE model in Gauss-Bonnet gravity gives accelerated expansion of the universe.

References

  1. 1.
    D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J. Kluson, Phys. Rev. D 81, 064028 (2010)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    M. Sami, Curr. Sci. 97, 887 (2009)Google Scholar
  7. 7.
    J.A. Frieman, M.S. Turner, D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 15 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Tsujikawa, Lect. Notes Phys. 800, 99 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Setare, E.N. Saridakis, Phys. Lett. B 670, 1 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M.R. Setare, Chin. Phys. Lett. 26, 029501 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R. Bousso, Rev. Mod. Phys. 74, 825 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    M. Li, Phys. Lett. B 603, 1 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    L. Xu, Y.J. Wang, JCAP 6, 2 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C. Gao, F. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    I. Duran, D. Pavon, Phys. Rev. D 83, 023504 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    R.G. Cai, B. Hu, Y. Zhang, Commun. Theor. Phys. 51, 954 (2009)ADSCrossRefMATHGoogle Scholar
  23. 23.
    C.J. Feng, Phys. Lett. B 670, 231 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    C.J. Feng, Phys. Lett. B 676, 168 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    C.J. Feng, Phys. Lett. B 672, 94 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Feng, X.-Z. Li, Phys. Lett. B 680, 355 (2009)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    A. Pasqua, M. Jamil, R. Myrzakulov, B. Majeed, Phys. Scr. 86, 045004 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A. Pasqua, A. Khodam-Mohammadi, M. Jamil, R. Myrzakulov, Astrophys. Space Sci. 340, 199 (2012)ADSCrossRefMATHGoogle Scholar
  29. 29.
    A. Pasqua, Astrophys. Space Sci. 346, 531 (2013)ADSCrossRefMATHGoogle Scholar
  30. 30.
    A. Pasqua, I. Khomenko, Int. J. Theor. Phys. 344, (2013)Google Scholar
  31. 31.
    A. Pasqua, K.A. Assaf, A.A. Aly, Int. J. Theor. Phys. 53, 566 (2014)CrossRefMATHGoogle Scholar
  32. 32.
    K.Y. Kim, H.W. Lee, Y.S. Myung, Gen. Relativ. Gravit. 43, 1095 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    S. Chattopadhyay, ISRN High Energy Phys. 2013, 895614 (2013)Google Scholar
  34. 34.
    G.W. Gibbons, Phys. Lett. B 537, 1 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    C.J. Wu et al., Astrophys. J. 753, 97 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Surajit Chattopadhyay
    • 1
  • Antonio Pasqua
    • 2
  • Ayman A. Aly
    • 3
  1. 1.Pailan College of Management and TechnologyKolkataIndia
  2. 2.Department of PhysicsUniversity of TriesteTriesteItaly
  3. 3.Department of physicsDamnhour UniversityDamnhourEgypt

Personalised recommendations