Electricity by intermittent sources: An analysis based on the German situation 2012

  • Friedrich Wagner
Open Access
Regular Article


The 2012 data of the German load, the on- and offshore and the photo-voltaic energy production are used and scaled to the limit of supplying the annual demand (100% case). The reference mix of the renewable energy (RE) forms is selected such that the remaining back-up energy is minimised. For the 100% case, the RE power installation has to be about 3 times the present peak load. The back-up system can be reduced by 12% in this case. The surplus energy corresponds to 26% of the demand. The back-up system and more so the grid must be able to cope with large power excursions. All components of the electricity supply system operate at low capacity factors. Large-scale storage can hardly be motivated by the effort to further reduce CO2 emission. Demand-side management will intensify the present periods of high economic activities. Its rigorous implementation will expand the economic activities into the weekends. On the basis of a simple criterion, the increase of periods with negative electricity prices in Germany is assessed. It will be difficult with RE to meet the low CO2 emission factors which characterise those European Countries which produce electricity mostly by nuclear and hydro power.


Renewable Energy Wind Power Electricity Production Electricity Price Surplus Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Ehlers, Strommarktdesign angesichts des Ausbaus fluktuierender Stromerzeugung (Verlag, 2011) ISBN386624519X, 9783866245198Google Scholar
  2. 2.
    Th. Große Böckmann, Hohe Anteile von Solar- und Windstrom unter Berücksichtigung hoher zeitlicher Auflösung von Angebot und Nachfrage (2010) p. 200, ISBN 978-3-643-10730-5Google Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    AGEB, Energieverbrauch in Deutschland (2012)
  10. 10.
  11. 11.
  12. 12.
    H.-J. Wagner et al., Energy 36, 2459 (2011)CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    H.-J. Wagner, Introduction to wind energy systems, in Strategies for Energy Generation, Conversion and Storage, edited by L. Cifarelli, F. Wagner, D. Wiersma (Società Italiana di Fisica) p. 171, ISSN 2282-4828, ISBN 978-88-7438-079-4Google Scholar
  16. 16.
  17. 17.
    Z. Boldis, Europhys. News 44, 16 (2013)ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    F. Wagner, Features of an electricity supply system based on variable input, IPP 18/1, September 2012Google Scholar
  20. 20., under International time series 2006-12
  21. 21.
  22. 22.
    International Energy Agency, IEA, CO_2 Emissions from Fuel Combustion (2012)Google Scholar
  23. 23.
    H.-J. Wagner et al., BWK 59, 44 (2007)Google Scholar
  24. 24.
    T. Marheineke, Lebenszyklusanalyse fossiler, nuklearer und regenerativer Stromerzeugungstechniken, IER Forschungsbericht, Band 87 (2002)Google Scholar
  25. 25.
    Ch. Ziems, Effects of fluctuating wind power and photovoltaic production to the controlability and thermodynamic behaviour of conventional power plants in Germany (VGB Power Tech Study, Uni Rostock, 2012)Google Scholar
  26. 26.
    G. Erdmann, P. Zweifel, Energieökonomik-Theorie und Anwendungen (Springer-Verlag, 2008)Google Scholar
  27. 27.
    D. Heide et al., Renew. Energy 35, 2483 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Schaber et al., Energy Policy 42, 498 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Gawlikowska-Fyk, The issue of loop flows (Polish Energy Regulatory Office, 2012)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Max-Planck Institut für PlasmaphysikGreifswaldGermany
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations