Advertisement

Advances in the development of micropattern gaseous detectors with resistive electrodes

  • P. Breuil
  • P. Fonte
  • E. Nappi
  • R. Oliveira
  • V. PeskovEmail author
Regular Article
  • 70 Downloads
Part of the following topical collections:
  1. Focus Point on Recent advances and applications of Resistive Plate Chambers

Abstract

The aim of this paper is to highlight very promising developments of a new family of micropattern gaseous detectors characterized by the presence in their layout of at least one resistive electrode. These novel detectors combine in one design the best features of RPCs (i.e. the protection against sparks) and conventional micropattern gaseous detectors (i.e. the high granularity and space resolution).

Keywords

Resistive Electrode Metallic Strip Rich Detector Anode Plate Resistive Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V.V. Parhomchuk et al., Nucl. Instrum. Methods 93, 269 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    B. Santonico et al., Nucl. Instrum. Methods 187, 377 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    F. Sauli, Nucl. Instrum. Method A 477, 1 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    T. Francke, Micropattern gaseous detectors, presented at the 42nd INFN ELOISATRON Project Workshop, Erice, Italy, September 2003, in Innovative detectors for supecolliders, edited by E. Nappi, J. Seguinot (World Scientific, Singapore, 2004) see also preprint/Physics/0404035 (2004).Google Scholar
  5. 5.
    V. Peskov, Progress in micro-pattern gaseous detectors and their applications, in Proceedings of the 3rd International Workshop on Advances in sensors and Interfaces, 2009, IWASI 2009, (IEEE, 2009) p. 52, DOI:10.1109/IWASI.2009.5184767.
  6. 6.
    P. Fonte et al., Nucl. Instrum. Methods A 443, 201 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    E. Cerron Zeballos et al., Nucl. Instrum. Methods A 374, 132 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    M. Alviggi et al., Nucl. Instrum. Methods A 515, 328 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bertolin et al., Nucl. Instrum. Methods A 661, S60 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    F. Anulli et al., Nucl. Instrum. Methods A 552, 276 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Hoshi et al., Nucl. Phys. B Proc. Suppl. 158, 190 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    P. Camarri, Nucl. Instrum. Methods A 602, 668 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    G. Barr et al., Nucl. Instrum. Methods A 533, 214 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    W.J. Llope, Nucl. Instrum. Methods A 661, S110 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    A. Schuttauf et al., Nucl. Phys. B Proc. Suppl. 158, 52 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    P. Paolucci et al., JINST 8, P04005 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    G. Aielli et al., JINST 8, P02020 (2013).ADSGoogle Scholar
  18. 18.
    F. Bossu et al., JINST 7, T12002 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    A. Alici, JINST 7, P 10024 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    Blanco et al., JINST 8, P01004 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    V. Peskov, Proc. Sci. 2012, 083 (2012).Google Scholar
  22. 22.
    D. Gonzales-Diaz, arXiv:1206.2735 (2012).
  23. 23.
    A. Oed, Nucl. Instrum. Methods A 263, 351 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    S.F. Biagi et al., Nucl. Instrum. Methods A 366, 76 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    I. Giomataris et al., Nucl. Instrum. Methods A 376, 29 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    T. Francke et al., Nucl. Instrum. Methods A 471, 85 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    I. Crotty et al., Nucl. Instrum. Methods A 505, 203 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    F. Bartol et al., J. Phys. III (France) 6, 337 (1996).CrossRefGoogle Scholar
  29. 29.
    F. Sauli, Nucl. Instrum. Methods A 386, 531 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    F. Sauli, Nucl. Instrum. Methods 477, 1 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    T. Zeuner et al., Nucl. Instrum. Methods A 446, 324 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    P. Abbon et al., Nucl. Instrum. Methods A 577, 455 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    G. Antchev et al., Nucl. Instrum. Methods A 617, 62 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    M. Alfonsi et al., Nucl. Instrum. Methods A 581, 283 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    S. Procureur et al., Nucl. Instrum. Methods A 659, 91 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    M. Alfonsi, CERN-LHCC-2008-011, LHC-P-001 (2008).Google Scholar
  37. 37.
    R. Oliveira et al., Nucl. Instrum. Methods A 576, 362 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    R. Oliveira et al., IEEE Trans. Nucl. Sci. 57, 3744 (2010).CrossRefGoogle Scholar
  39. 39.
    Di Mauro et al., IEEE Conf. Rep. 6, 3852 (2006).Google Scholar
  40. 40.
    2nd International Conference on Micro Pattern Gaseous Detectors, 2011, Kobe, Japan, Book of abstracts, http://ppwww.phys.sci.kobe-u.ac.jp/~upic/mpgd2011/Abstracts.pdf.
  41. 41.
    A. Yoshikawa et al., JINST 7, C06006 (2012).Google Scholar
  42. 42.
    V. Peskov et al., Nucl. Instrum. Methods A 661, S153 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    V. Peskov et al., JINST 7, C01005 (2012).CrossRefGoogle Scholar
  44. 44.
    P. Fonte et al., JINST 7, P12003 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    A. Di Mauro et al., IEEE Trans. Nucl. Sci. 56, 1550 (2009).ADSCrossRefGoogle Scholar
  46. 46.
    VHMPID: The very high momentum particle identification detector for ALICE, Letter of Intent (2008) https://twiki.cern.ch/twiki/bin/viewfile/Sandbox/VHMPIDLoI?rev=1;filename=vhmpidLOI_v07.pdf.
  47. 47.
    P. Martinengo et al., Nucl. Instrum. Methods A 639, 126 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    V. Peskov et al., Nucl. Instrum. Methods A 695, 154 (2012).ADSCrossRefGoogle Scholar
  49. 49.
    G. Charpak et al., Nucl. Instrum. Methods A 277, (1989) 537 (2011).Google Scholar
  50. 50.
    J. Seguinot et al., Nucl. Instrum. Methods A 297, 133 (1990).ADSCrossRefGoogle Scholar
  51. 51.
    A. Aprile et al., Nucl. Instrum. Methods A 338, 328 (1994).ADSCrossRefGoogle Scholar
  52. 52.
    A. Aprile et al., Nucl. Instrum. Methods A 343, 129 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    G. Charpak et al., IEEE Trans. Nucl. Sci. 55, 1657 (2008).ADSCrossRefGoogle Scholar
  54. 54.
    G. Charpak et al., JINST 3, P02006 (2008).ADSCrossRefGoogle Scholar
  55. 55.
    G. Charpak et al., Nucl. Instrum. Methods A 628, 187 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    G. Charpak, arXiv:1002.4732 (2010).
  57. 57.
    V. Peskov, arXiv:0709.2819 (2007).
  58. 58.
    G. Charpak et al., JINST 4, P12007 (2009).ADSCrossRefGoogle Scholar
  59. 59.
    P. Martinenego, GEM application for safety and environmental applications (2012) http://knowledgetransfer.web.cern.ch/technology-transfer/ip-management/kt-fund/funded-projects.
  60. 60.
    I. Crotty et al., Nucl. Instrum. Methods A 505, 203 (2003).ADSCrossRefGoogle Scholar
  61. 61.
    T. Francke et al., Nucl. Instrum. Methods A 508, 83 (2003).ADSCrossRefGoogle Scholar
  62. 62.
    T. Alexopoulos et al., Nucl. Instrum. Methods A 640, 110 (2011).ADSCrossRefGoogle Scholar
  63. 63.
    A. Blanco et al., JINST 8, P01004 (2013).ADSCrossRefGoogle Scholar
  64. 64.
    A. Blanco et al., JINST 7, P11012 (2012).ADSCrossRefGoogle Scholar
  65. 65.

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Breuil
    • 1
  • P. Fonte
    • 2
  • E. Nappi
    • 3
  • R. Oliveira
    • 4
  • V. Peskov
    • 4
    Email author
  1. 1.St. Etienne Ecole des MinesSt. EtienneFrance
  2. 2.LIP/ISECCoimbraPortugal
  3. 3.INFNBariItaly
  4. 4.CERNGenevaSwitzerland

Personalised recommendations