Study on dynamical behaviors of the spring-pendulum system with an irrational and fractional nonlinear restoring force

  • Xinwei Yang
  • Ruilan TianEmail author
  • Qin Zhang
Regular Article


A novel model comprised of a lumped mass linked with a pair of inclined elastic stiff springs is proposed, which can be regarded as a smooth and discontinuous oscillator under constant excitation, i.e., CSD (originally introduced in Chin. Phys. Lett. 29, 0847061-4 (2012)), vibrating vertically and laterally. Of particular concern is the influence of the parameters on its steady-state response. Neglecting its lateral vibration, the system is a single-degree-of-freedom system, i.e., the CSD oscillator, whose amplitude-frequency response curves were studied by using average method and elliptical integral. The third-order approximation form of the two-degree-of-freedom system was introduced and the amplitude-frequency response curves were obtained. By simulating the original system and the approximation one using the Matlab software, we obtained phase portraits, Poincaré sections, bifurcations and maximum Lyapunov exponents of the two systems. And the practicality of the approximation system was certified by comparing the characteristics of bifurcations and chaos of the two systems, which can offer theoretical foundations for practical engineering.


  1. 1.
    F. Bevilacqua, Sci. Educ. 15, 553 (2006)CrossRefGoogle Scholar
  2. 2.
    Y. Liang, B.F. Feeny, Nonlinear Dyn. 46, 17 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    F.L. Chernousko, S.S. Reshmin, Nonlinear Dyn. 47, 65 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    L. Hatvani, Period Math. Hung. 56, 71 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Paul, P.H. Richer, Z. Phys. B 93, 515 (1994)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    K. Zaki, S. Noah, K.R. Rajagopal et al., Nonlinear Dyn. 27, 1 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    T.G. Ioannis, Nonlinear Dyn. 18, 51 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    M. Zou, Phys. Lett. A. 166, 321 (1992)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    I.T. Georgiou, I.B. Schwartz, Nonlinear Dyn. 25, 3 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    S. Jeong, S. Takahashi, Intel. Serv. Robotics 1, 313 (2008)CrossRefGoogle Scholar
  11. 11.
    L.G. Lobas, V.V. Koval'chuk, Int. Appl. Mech. 43, 690 (2007)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Q.J. Cao, N. Han et al., Chin. Phys. Lett. 28, 0605021 (2011)Google Scholar
  13. 13.
    N. Han, Q.J. Cao, Int. J. Bifurc. Chaos 23, 13500741 (2013)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Q.J. Cao, M. Wiercigroch, E.E. Pavlovskaia, J.M.T. Thompson, C. Grebogi, Phys. Rev. E 74, 046218 (2006)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Q.J. Cao, M. Wiercigroch, E.E. Pavlovskaia, C. Grebogi, J.M.T. Thompson, Int. J. Nonlinear Mech. 43, 462 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Q.J. Cao, M. Wiercigroch, E.E. Pavlovskaia, J.M.T. Thompson, C. Grebogi, Phil. Trans. R. Soc. A 366, 635 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    R.L. Tian, Q.J. Cao, S.P. Yang, Nonlinear Dyn. 59, 19 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    S.K. Lai, Y. Xiang, Comput. Math. Appl. 60, 2078 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    R.L. Tian, X.W. Yang, Q.J. Cao, Q.L. Wu, Chin. Phys. B 21, 020503 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    R.L. Tian, X.W. Yang, Q.J. Cao, Y.W. Han, Int. J. Bifurc. Chaos 22, 12501081 (2012)CrossRefGoogle Scholar
  21. 21.
    R.L. Tian, Q.L. Wu, Z.J. Liu, X.W. Yang, Chin. Phys. Lett. 29, 084706 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R.L. Tian, Q.L. Wu, X.W. Yang, C.D. Si, Eur. Phys. J. Plus 128, 80 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of TrafficShijiazhuang Institute of Railway TechnologyShiJiaZhuangChina
  2. 2.Department of Mathematics and PhysicsShijiazhuang Tiedao UniversityShijiazhuangChina

Personalised recommendations