Advertisement

Plane symmetric relativistic fluids with Taub geometry

  • Sudan HansrajEmail author
Regular Article

Abstract

We investigate the problem of generating perfect fluid models by performing a conformal transformation on a non-conformally flat but conformally Ricci-flat (vacuum) seed metric such as the Taub (Ann. Math. 53, 472 (1951)) spacetime. The Taub metric is a static plane symmetric matter-free solution of the Einstein field equations possessing three Killing vectors. It turns out that, assuming a conformal factor depending on the temporal coordinate and one space variable, the resultant metrics are necessarily static. We are able to solve completely the field equations and obtain the geometric and dynamical variables explicitly. A study of the elementary properties required of realistic fluids is made and it is found that the fluid constructed displays necessary qualitative features desirable in realistic cosmological distributions. In particular the energy density and pressure profiles are positive definite and the adiabatic sound-speed index is found to be causal (subluminal) in a region excluding the central axis. Importantly, the weak, strong and dominant energy conditions are all satisfied. It is not possible to obtain a barotropic equation of state in this model.

Keywords

Conformal Transformation Killing Vector Weyl Tensor Conformal Factor Seed Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963).MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Wyman, Phys. Rev. 75, 1930 (1949).MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    K. Schwarzschild, Sitzungsber. K. Preuss. Akad. Wiss. 7, 189 (1916).Google Scholar
  4. 4.
    H. Stephani, Commun. Math. Phys. 4, 137 (1967).MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    H. Stephani, Commun. Math. Phys. 5, 437 (1967).MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Defrise-Carter, Commun. Math. Phys. 40, 282 (1975).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Carot, A.A. Coley, A.M. Sintes, Gen. Relativ. Gravit. 28, 311 (1996).MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    N. van den Bergh, J. Math. Phys. 27, 1076 (1986).MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    N. van den Bergh, Gen. Relativ. Gravit. 18, 649 (1986).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    N. van den Bergh, J. Math. Phys. 29, 1451 (1988).MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    J. Castejon-Amenedo, A.A. Coley, Class. Quantum Grav. 9, 2203 (1992).MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    S. Hansraj, S.D. Maharaj, A.M. Msomi, K.S. Govinder, J. Phys. A: Math. Gen. 38, 4419 (2005).MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    S.B. Edgar, G. Ludwig, Class. Quantum Grav. 14, L65 (1997).MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    J.E.F. Skea, Class. Quantum Grav. 14, 2393 (1997).MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Podolský, O. Prikryl, Gen. Relativ. Gravit. 41, 1069 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    R. Grover, P. Nurowski, J. Geom. Phys. 56, 450 (2006).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. Barnes, J.M.M. Senovilla, gr-qc/0305091.Google Scholar
  18. 18.
    A.A. García, C. Campuzano, Phys. Rev. D 66, 124018 (2002).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C.D. Collinson, Gen. Relativ. Gravit. 7, 419 (1976).MathSciNetADSGoogle Scholar
  20. 20.
    N. van den Bergh, J. Phys. Conf. Ser. 314, 012022 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Coley, S.R. Czapor, Class. Quantum Grav. 9, 1787 (1992).MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    F. de Felice, C.J.S. Clarke, Relativity on Manifolds (Cambridge University Press, Cambridge, 1990).Google Scholar
  23. 23.
    B.O.J. Tupper, J. Math. Phys. 31, 1704 (1990).MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    R.K.Barrett, C.A. Clarkson, Class. Quantum Grav. 17, 5047 (2000).MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    A.H. Taub, Ann. Math. 53, 472 (1951).MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    M.F.A. da Silva, A. Wang, N.O. Santos, Phys. Lett. A 244, 462 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    H.S. Zhang, H. Noh, Z.H. Zhu, Phys. Lett. B 663, 291 (2008).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. Wolfram, MATHEMATICA Version 7.0 (Addison-Wesley, Redwood City, 2009).Google Scholar
  29. 29.
    S. Hansraj, Gen. Relativ. Gravit. 44, 125 (2012).MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    E. Kasner, Am. J. Math. 43, 217 (1921).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of MathematicsUniversity of KwaZulu NatalDurbanSouth Africa

Personalised recommendations