Advertisement

Reconstruction of f(G) gravity with the new agegraphic dark-energy model

  • Abdul Jawad
  • Surajit Chattopadhyay
  • Antonio Pasqua
Regular Article

Abstract

We consider the reconstruction scenario of the new agegraphic dark-energy model and f(G) theory of gravity where G represents the Gauss-Bonnet invariant in the flat FRW spacetime. In this context, we assume a solution of the scale factor in power law form and study the correspondence scenario. A new agegraphic f(G) model is constructed and discussed graphically for the evolution of the universe. Using this model, we investigate the different eras of the expanding universe and stability with the help of the equation-of-state (EoS) parameter and squared speed of sound, respectively. It is mentioned here that the reconstructed model represents the accelerated expansion of the universe with instability. Moreover, the statefinder trajectories are studied and we find out that the model is not capable of reaching the ΛCDM phase of the universe.

Keywords

Dark Energy Dark Energy Model Accelerate Expansion Conformal Time Phantom Divide Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    S.F. Daniel, Phys. Rev. D 77, 103513 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    H. Hoekstra, B. Jain, Annu. Rev. Nucl. Part. Sci. 58, 99 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    C. Fedeli, L. Moscardini, M. Bartelmann, Astron. Astrophys. 500, 667 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    K. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    M. Seikel, C. Clarkson, M. Smith, JCAP 06, 036 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    C. Clarkson, C. Zunckel, Phys. Rev. Lett. 104, 211301 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    X.M. Liu, W.B. Liu, Astrophys. Space Sci. 334, 203 (2011).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    R.G. Cai, Phys. Lett. B 657, 228 (2007).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    H. Wei, R.G. Cai, Phys. Lett. B 663, 1 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    Y.S. Myung, M.G. Seo, Phys. Lett. B 671, 435 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 646, 105 (2007).ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    M.C.B. Abdalla, S. Nojiri, S.D. Odintsov, Class. Quantum Grav. 22, L35 (2005).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    B. Li, J.D. Barrow, Phys. Rev. D 75, 084010 (2007).ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    E.V. Linder, Phys. Rev. D 81, 127301 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 104017 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    A.R. Rastkar, M.R. Setare, F. Darabi, Astrophys. Space Sci. 337, 487 (2012).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    S.C. Davis, arXiv:0709.4453.
  25. 25.
    M.R. Setare, E.N. Saridakis, Phys. Lett. B 670, 1 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    X.L. Liu, X. Zhang, Commun. Theor. Phys. 52, 761 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    M.R. Setare, Astrophys. Space Sci. 326, 27 (2010).ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Jamil, E.N. Saridakis, JCAP 07, 028 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    M.R. Setare, M. Jamil, EPL 92, 49003 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    A. Jawad, A. Pasqua, S. Chattopadhyay, Astrophys. Space Sci. 344, 489 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    K.Y. Kim, H.W. Lee, Y.S. Myung, Phys. Lett. B 660, 118 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    M. Sharif, A. Jawad, Eur. Phys. C 72, 2097 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    M.R. Setare, Phys. Lett. B 654, 1 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    S. Chattopadhyay, A. Pasqua, Astrophys. Space Sci. 344, 269 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    M. Sharif, A. Jawad, Europ. Phys. J. C 72, 1901 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    G. Panotopoulos, Nuc. Phys. B 796, 66 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    S. Chakraborty, U. Debnath, M. Jamil, R. Myrzakulov, Int. J. Theor. Phys. 51, 2246 (2012).CrossRefzbMATHGoogle Scholar
  40. 40.
    W. Zimdahl, D. Pavon, Gen. Relativ. Gravit. 36, 1483 (2004).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    B. Li, J.D. Barrow, D.F. Mota, Phys. Rev. D 76, 044027 (2007).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abdul Jawad
    • 1
  • Surajit Chattopadhyay
    • 2
  • Antonio Pasqua
    • 3
  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Pailan College of Management and TechnologyKolkataIndia
  3. 3.Department of PhysicsUniversity of TriesteTriesteItaly

Personalised recommendations