Advertisement

Forty years of Galilean Electromagnetism (1973–2013)

  • Germain RousseauxEmail author
Review

Abstract

We review Galilean Electromagnetism since the 1973 seminal paper of Jean-Marc Lévy-Leblond and Michel Le Bellac and we explain for the first time all the historical experiments of Rowland, Vasilescu Karpen, Roentgen, Eichenwald, Wilson, Wilson and Wilson, which were previously interpreted in a Special Relativistic framework by showing the uselessness of the latter for setups involving slow motions of a part of the apparatus. Galilean Electromagnetism is not an alternative to Special Relavity but is precisely its low-velocity limit in Classical Electromagnetism.

Keywords

Special Relativity Gauge Condition Lorentz Transformation Laboratory Frame Temporal Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Niederle, A. Nikitin, J. Math. Phys. 42, 105207 (2009).MathSciNetGoogle Scholar
  2. 2.
    A. Einstein, Ann. Phys. 17, 891 (1905) available at http://einstein-annalen.mpiwg-berlin.mpg.de/home.CrossRefzbMATHGoogle Scholar
  3. 3.
    A.I. Miller Albert Einstein's Special Theory of Relativity (Addison-Wesley, New York, 1981).Google Scholar
  4. 4.
    E.T. Whittaker, A History of the Theories of Aether and Electricity (From the Age of Descartes to the Close of the 19th Century) (Longmans, Green & Co., London, 1910).Google Scholar
  5. 5.
    O. Darrigol, Centaurus 36, 245 (1993).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    O. Darrigol, Am. J. Phys. 63, 908 (1995).CrossRefADSGoogle Scholar
  7. 7.
    O. Darrigol, Electrodynamics from Ampère to Einstein (Oxford University Press, 2000).Google Scholar
  8. 8.
    J.D. Norton, Arch. Hist. Exact Sci. 59, 45 (2004).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    G. Hon, B.R. Goldstein, Arch. Hist. Exact Sci. 59, 437 (2005).CrossRefzbMATHMathSciNetADSGoogle Scholar
  10. 10.
    T. Damour, Ann. Phys. 17, 619 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    M. Von Laue, La Théorie de la Relativité, tome I (Editions Jacques Gabay 1911) edition 1924, reprint 2003.Google Scholar
  12. 12.
    W. Pauli, Theory of Relativity (Dover, Paris, 1981).Google Scholar
  13. 13.
    J.-B. Pomey, Cours d'Electricité Théorique, tome III (Gauthier-Villars, Paris, 1931).Google Scholar
  14. 14.
    M. Abraham, R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, 1950).Google Scholar
  15. 15.
    A. Sommerfeld, Electrodynamics (Academic Press, New York, 1952).Google Scholar
  16. 16.
    W.K.H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, New York, 1955).Google Scholar
  17. 17.
    E.G. Cullwick, Electromagnetism and relativity with particular reference to moving media and electromagnetic induction (Longmans, Green and Company, London, 1957).Google Scholar
  18. 18.
    H. Arzeliès Milieux conducteurs ou polarisables en mouvement, Etudes Relativistes (Gauthier-Villars, Paris, 1959).Google Scholar
  19. 19.
    M.A. Tonnelat, Les principes de la théorie électromagnétique et de la relativité (Masson, Paris, 1959).Google Scholar
  20. 20.
    W.G.V. Rosser, Classical Electromagnetism via Relativity (Butherworths, London, 1968).Google Scholar
  21. 21.
    H.H. Woodson, J.R. Melcher Electromechanical Dynamics (Wiley, New York, 1968).Google Scholar
  22. 22.
    J. Van Bladel, Relativity and Engineering, in Springer Series in Electrophysics, Vol. 15 (Springer-Verlag, 1984).Google Scholar
  23. 23.
    D. Schieber, Electromagnetic Induction Phenomena, in Springer Series in Electrophysics, Vol. 16 (Springer-Verlag, 1986).Google Scholar
  24. 24.
    J.R. Melcher, H.A. Haus, Electromagnetic Fields and Energy (Hypermedia Teaching Facility, M.I.T., 1998) available at: http://web.mit.edu/6.013_book/www/.
  25. 25.
    F.W. Hehl, Y.N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Birkhauser, Boston, MA, 2003).Google Scholar
  26. 26.
    I. Brevik, Phys. Rep. 52, 133 (1979).CrossRefADSGoogle Scholar
  27. 27.
    R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007).CrossRefADSGoogle Scholar
  28. 28.
    F.W. Hehl, Ann. Phys. 17, 691 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Y.N. Obukhov, Ann. Phys. 17, 830 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    R.E. Rosensweig, Basic Equations for Magnetic Fluids with Internal Rotations in Ferrofluids, Magnetically Controllable Fluids and Their Applications, edited by S. Odenbach, Springer Lecture Series in Physics, Vol. 594 (Springer, Berlin, 2002) pp. 61--84.Google Scholar
  31. 31.
    R.E. Rosensweig, J. Chem. Phys. 121, 1228 (2004).CrossRefADSGoogle Scholar
  32. 32.
    J.L. Ericksen, Contin. Mech. Thermodyn. 17, 361 (2006).CrossRefzbMATHMathSciNetADSGoogle Scholar
  33. 33.
    J. Van Bladel, Proc. IEEE 61, 260 (1973).CrossRefGoogle Scholar
  34. 34.
    J. Van Bladel, Proc. IEEE 64, 301 (1976).CrossRefADSGoogle Scholar
  35. 35.
    D. Schieber, Appl. Phys. A: Mater. Sci. Process. 14, 327 (1977).CrossRefGoogle Scholar
  36. 36.
    D. Schieber, Elect. Eng. (Arch. Elektro.) 63, 111 (1981).Google Scholar
  37. 37.
    D. Schieber, Elect. Eng. (Arch. Elektro.) 67, 113 (1984).Google Scholar
  38. 38.
    D. Schieber, Elect. Eng. (Arch. Elektro.) 69, 121 (1986).Google Scholar
  39. 39.
    G.N. Pellegrini, A.R. Swift, Am. J. Phys. 63, 694 (1995).CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    T.A. Weber, Am. J. Phys. 65, 946 (1997).CrossRefADSGoogle Scholar
  41. 41.
    C.T. Ridgely, Am. J. Phys. 66, 114 (1998).CrossRefADSGoogle Scholar
  42. 42.
    C.T. Ridgely, Am. J. Phys. 67, 414 (1999).CrossRefADSGoogle Scholar
  43. 43.
    N.N. Rozanov, G.B. Sochilin, Phys. Uspekhi 49, 407 (2006).CrossRefADSGoogle Scholar
  44. 44.
    C.E.S. Canovan, R.W. Tucker, Am. J. Phys. 78, 1181 (2010).CrossRefADSGoogle Scholar
  45. 45.
    M. Le Bellac, J.M. Lévy-Leblond, Nuovo Cimento B 14, 217 (1973).CrossRefGoogle Scholar
  46. 46.
    F.J. Dyson, Am. J. Phys. 58, 209 (1990).CrossRefzbMATHMathSciNetADSGoogle Scholar
  47. 47.
    A. Vaidya, C. Farina, Phys. Lett. A 153, 265 (1991).CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    H.R. Brown, P.R. Holland, Am. J. Phys. 67, 204 (1999).CrossRefzbMATHMathSciNetADSGoogle Scholar
  49. 49.
    H.R. Brown, P.R. Holland, Stud. Hist. Philos. Mod. Phys. 34, 161 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    M. de Montigny, F.C. Khanna, A.E. Santana, Int. J. Theor. Phys. 42, 649 (2003).CrossRefzbMATHGoogle Scholar
  51. 51.
    G. Rousseaux, Ann. Fond. Louis de Broglie 28, 261 (2003).MathSciNetGoogle Scholar
  52. 52.
    G. Rousseaux, Europhys. Lett. 71, 15 (2005).CrossRefMathSciNetADSGoogle Scholar
  53. 53.
    M. de Montigny, G. Rousseaux, Eur. J. Phys. 27, 755 (2006).CrossRefzbMATHGoogle Scholar
  54. 54.
    M. de Montigny, G. Rousseaux, Am. J. Phys. 75, 984 (2007).CrossRefADSGoogle Scholar
  55. 55.
    G. Rousseaux, EPL 84, 20002 (2008).CrossRefADSGoogle Scholar
  56. 56.
    J.A. Heras, Eur. J. Phys. 31, 1177 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    J.A. Heras, Am. J. Phys. 78, 1048 (2010).CrossRefADSGoogle Scholar
  58. 58.
    G. Manfredi, Eur. J. Phys. 34, 859 (2013).CrossRefzbMATHGoogle Scholar
  59. 59.
    F. Rapetti, G. Rousseaux, Appl. Num. Math. (2012) DOI:10.1016/j.apnum.2012.11.007.
  60. 60.
    J.C. Maxwell, Philos. Mag. 21, 161 (1861).Google Scholar
  61. 61.
    H. Poincaré, Rend. Circ. Mat. Palermo 26, 129 (1906).CrossRefGoogle Scholar
  62. 62.
    H. Minkowski, Nachr. Ges. Wiss. Göttingen 53, 111 (1908) available at http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D82816.Google Scholar
  63. 63.
    J.M. Lévy-Leblond, Ann. Inst. Henri Poincare Sect. A 3, 1 (1965).zbMATHGoogle Scholar
  64. 64.
    J.R. Melcher, Continuum Electromechanics (M.I.T. Press, 1981).Google Scholar
  65. 65.
    G. Rousseaux, R. Kofman, O. Kofman, Eur. Phys. J. D 42, 249 (2008).CrossRefADSGoogle Scholar
  66. 66.
    C. Phatak, A.K, Petford-Long, M. De Graef, Phys. Rev. Lett. 104, 253901 (2010).CrossRefADSGoogle Scholar
  67. 67.
    G. Giuliani, Eur. J. Phys. 31, 871 (2010).CrossRefGoogle Scholar
  68. 68.
    A.C.T Wu, C.N. Yang, Int. J. Mod. Phys. A 21, 3235 (2006).CrossRefzbMATHADSGoogle Scholar
  69. 69.
    C.N. Yang, History of the vector potential (2010) recorded seminar at AB50, http://www.tau.ac.il/~ab50/.
  70. 70.
    D. Gross, Phase Factors, Gauge Theories and Strings (2010) recorded seminar at AB50: http://www.tau.ac.il/~ab50/.
  71. 71.
    A. Einstein, J. Laub, Ann. Phys. 26, 532 (1908).CrossRefzbMATHGoogle Scholar
  72. 72.
    A. Einstein, J. Laub, Ann. Phys. 26, 541 (1908).CrossRefzbMATHGoogle Scholar
  73. 73.
    A. Einstein, J. Laub, Ann. Phys. 27, 232 (1908).CrossRefGoogle Scholar
  74. 74.
    A. Einstein, J. Laub, Ann. Phys. 28, 445 (1908) available at http://einstein-annalen.mpiwg-berlin.mpg.de/home.Google Scholar
  75. 75.
    J. Laub, Jahrb. Radioakt. Elektro. 7, 405 (1910).Google Scholar
  76. 76.
    H. Goldstein Classical Mechanics, second edition (Addison-Wesley, Reading, 1981).Google Scholar
  77. 77.
    J.R. Melcher, H.A. Haus, IEEE Transact. Educ. 33, 35 (1990).CrossRefADSGoogle Scholar
  78. 78.
    M. Zahn, H.A. Haus, J. Electrost. 34, 109 (1995).CrossRefGoogle Scholar
  79. 79.
    A. Zozaya, Am. J. Phys. 75, 565 (2007).CrossRefzbMATHMathSciNetADSGoogle Scholar
  80. 80.
    A.L. Kholmetskii, O.V. Missevitch, R. Smirnov-Rueda, R. Ivanov, A.E. Chubykalo, J. Appl. Phys. 101, 023532 (2007).CrossRefADSGoogle Scholar
  81. 81.
    A.L. Kholmetskii, O.V. Missevitch, R. Smirnov-Rueda, J. Appl. Phys. 102, 013529 (2007).CrossRefADSGoogle Scholar
  82. 82.
    N.V. Budko, Phys. Rev. Lett. 102, 020401 (2009).CrossRefADSGoogle Scholar
  83. 83.
    A. Bandyopadhyay, A. Kumar, Eur. J. Phys. 31, 1391 (2010).CrossRefGoogle Scholar
  84. 84.
    R.C. Costen, Four-dimensional derivation of the electrodynamic jump conditions, tractions, and power transfer at a moving boundary, Nasa Technical Note NASA-TN-D-2618, available at http://naca.larc.nasa.gov/search.jsp.
  85. 85.
    R.C. Costen, D. Adamson, Proc. IEEE 53, 1181 (1965).CrossRefGoogle Scholar
  86. 86.
    F.J. Young, R.C. Costen, D. Adamson, Proc. IEEE 54, 399 (1966).CrossRefGoogle Scholar
  87. 87.
    A. Panaitescu, Rev. Roum. Sci. Techn. - Electrotechn. Energ. 33, 227 (1988).MathSciNetGoogle Scholar
  88. 88.
    V. Namias, Am. J. Phys. 56, 898 (1988).CrossRefADSGoogle Scholar
  89. 89.
    H.A. Rowland, Ann. Chim. Phys. 12, 119 (1877) available at http://gallica.bnf.fr/.Google Scholar
  90. 90.
    H.A. Rowland, C.T. Hutchinson, Philos. Mag. 27, 445 (1889).CrossRefzbMATHGoogle Scholar
  91. 91.
    F. Himstedt, Ann. Phys. 38, 560 (1889).CrossRefGoogle Scholar
  92. 92.
    H. Pender, Phys. Rev. 13, 203 (1901).ADSGoogle Scholar
  93. 93.
    H. Pender, Phys. Rev. 15, 291 (1902).ADSGoogle Scholar
  94. 94.
    H. Pender, V. Crémieu, Phys. Rev. 17, 385 (1903).ADSGoogle Scholar
  95. 95.
    A. Eichenwald, Ann. Phys. 11, 1 (1903).Google Scholar
  96. 96.
    N. Vasilesco Karpen, J. Phys. Theor. Appl. 2, 667 (1903).CrossRefzbMATHGoogle Scholar
  97. 97.
    N. Vasilesco Karpen, Ann. Chim. Phys. 8, 465 (1904) available at http://gallica.bnf.fr/.Google Scholar
  98. 98.
    A. Nicolaide, Significance of the scientific research of Nicolae Vasilescu Karpen (1870-1964) (AGIR Publishing House, 2006).Google Scholar
  99. 99.
    W.C. Roentgen, Sitzungsber. K. Preuss. Akad. Wiss. Berlin I, 195 (1885) available at http://bibliothek.bbaw.de/bibliothek-digital/digitalequellen/schriften.Google Scholar
  100. 100.
    W.C. Roentgen, Ann. Phys. 35, 264 (1888).CrossRefGoogle Scholar
  101. 101.
    W.C. Roentgen, Ann. Phys. Chem. Neue Folge 40, 93 (1890).CrossRefADSGoogle Scholar
  102. 102.
    U. Busch, Wilhelm Conrad Roentgen's Contribution to Physics, in Proceedings 23rd ICR, Montreal Canada June 25-29 (2004) pp. 48-53.Google Scholar
  103. 103.
    P. Dawson, Br. J. Radiol. 70, 809 (1997).Google Scholar
  104. 104.
    P. Dawson, Br. J. Radiol. 71, 243 (1998).Google Scholar
  105. 105.
    A. Eichenwald, Ann. Phys. 11, 421 (1903).Google Scholar
  106. 106.
    A. Eichenwald, Ann. Phys. 13, 919 (1904).CrossRefGoogle Scholar
  107. 107.
    A. Eichenwald, Jahrb. Radioakt. Elektro. 5, 82 (1908).Google Scholar
  108. 108.
    W. Pauli, Electrodynamics, Pauli Lectures on Physics, Vol. 1 (Dover, New York, 2000).Google Scholar
  109. 109.
    H.A. Wilson, Philos. Trans. R. Soc. London 204, 121 (1904) available at http://gallica.bnf.fr/.CrossRefADSGoogle Scholar
  110. 110.
    S.J. Barnett, Philos. Trans. R. Soc. London 511, 367 (1905) available at http://gallica.bnf.fr/.ADSGoogle Scholar
  111. 111.
    S.J. Barnett, Phys. Rev. 27, 425 (1908).ADSGoogle Scholar
  112. 112.
    S.J. Barnett, Phys. Rev. 35, 323 (1912).ADSGoogle Scholar
  113. 113.
    E.H. Kennard, Phys. Rev. 1, 355 (1913).CrossRefADSGoogle Scholar
  114. 114.
    S.J. Barnett, Phys. Rev. 2, 323 (1913).CrossRefADSGoogle Scholar
  115. 115.
    S.J. Barnett, Am. J. Phys. 7, 28 (1939).CrossRefADSGoogle Scholar
  116. 116.
    M. Wilson, H.A. Wilson, Philos. Trans. R. Soc. London 89, 99 (1913) available at http://gallica.bnf.fr/.ADSGoogle Scholar
  117. 117.
    J.B. Hertzberg, Test of Electromagnetic Field Transformations in a Rotating Medium, Master Thesis, Advisor Larry Hunter, Department of Physics of Amherst College (1997).Google Scholar
  118. 118.
    R.V. Krotkov, G.N. Pellegrini, N.C. Ford, A.R. Swift, Am. J. Phys. 67, 493 (1999).CrossRefADSGoogle Scholar
  119. 119.
    S.R. Bickman, The Rotating Magnet Experiment: A Test of Relativity, Master Thesis, Advisor Larry Hunter, Department of Physics of Amherst College (2000).Google Scholar
  120. 120.
    J.B. Hertzberg, S.R. Bickman, M.T. Hummon, D. Krause, S.K. Peck, L.R. Hunter, Am. J. Phys. 69, 648 (2001).CrossRefADSGoogle Scholar
  121. 121.
    B.D. Nag, A.M. Sayied, Proc. R. Soc. A 235, 544 (1956).CrossRefMathSciNetADSGoogle Scholar
  122. 122.
    A. Drezet, Eur. Phys. J. B 45, 103 (2005).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut PprimeCNRS - Université de Poitiers - ISAE ENSMA, UPR 3346Futuroscope CedexFrance

Personalised recommendations