Advertisement

Self-completeness and spontaneous dimensional reduction

  • Jonas MureikaEmail author
  • Piero Nicolini
Regular Article

Abstract

A viable quantum theory of gravity is one of the biggest challenges physicists are facing. We discuss the confluence of two highly expected features which might be instrumental in the quest of a finite and renormalizable quantum gravity —spontaneous dimensional reduction and self-completeness. The former suggests the spacetime background at the Planck scale may be effectively two-dimensional, while the latter implies a condition of maximal compression of matter by the formation of an event horizon for Planckian scattering. We generalize such a result to an arbitrary number of dimensions, and show that gravity in higher than four dimensions remains self-complete, but in lower dimensions it does not. In such a way we established an “exclusive disjunction” or “exclusive or” (XOR) between the occurrence of self-completeness and dimensional reduction, with the goal of actually reducing the unknowns for the scenario of the physics at the Planck scale. Potential phenomenological implications of this result are considered by studying the case of a two-dimensional dilaton gravity model resulting from dimensional reduction of the Einstein gravity.

Keywords

Black Hole Dimensional Reduction Quantum Gravity Planck Scale Einstein Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Ambjorn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 95, 171301 (2005) hep-th/0505113.ADSCrossRefGoogle Scholar
  2. 2.
    O. Lauscher, M. Reuter, JHEP 10, 050 (2005) hep-th/0508202.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. Benedetti, Phys. Rev. Lett. 102, 111303 (2009) arXiv:0811.1396.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    L. Modesto, Class. Quantum Grav. 26, 242002 (2009) arXiv:0812.2214.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P. Nicolini, E. Spallucci, Phys. Lett. B 695, 290 (2011) arXiv:1005.1509.ADSCrossRefGoogle Scholar
  6. 6.
    J. Laiho, D. Coumbe, Phys. Rev. Lett. 107, 161301 (2011) arXiv:1104.5505.ADSCrossRefGoogle Scholar
  7. 7.
    G. Calcagni, Phys. Rev. E 87, 012123 (2013) arXiv:1205.5046 [hep-th].ADSCrossRefGoogle Scholar
  8. 8.
    G. Calcagni, Phys. Rev. D 86, 044021 (2012) arXiv:1204.2550 [hep-th].ADSCrossRefGoogle Scholar
  9. 9.
    L. Modesto, P. Nicolini, Phys. Rev. D 81, 104040 (2010) arXiv:0912.0220.ADSCrossRefGoogle Scholar
  10. 10.
    S. Carlip, Spontaneous dimensional reduction in short-distance quantum gravity?, invited talk at the 25th Max Born Symposium: “The Planck Scale” - 29 Jun - 3 Jul 2009, Wroclaw, Poland, arXiv:0909.3329.
  11. 11.
    S. Carlip, The Small Scale Structure of Spacetime, in Foundations of Space and Time, edited by George Ellis, Jeff Murugan, Amanda Weltman (Cambridge University Press, 2011) arXiv:1009.1136.
  12. 12.
    S. Carlip, D. Grumiller, Phys. Rev. D 84, 084029 (2011) arXiv:1108.4686.ADSCrossRefGoogle Scholar
  13. 13.
    J. Mureika, Phys. Lett. B 716, 171 (2012) arXiv:1204.3619 [gr-qc].ADSCrossRefGoogle Scholar
  14. 14.
    Lhc physics data taking gets underway at new record collision energy of 8 tev (2012) http://press.web.cern.ch/press/PressReleases/Releases2012/PR10.12E.html.
  15. 15.
    A. Aurilia, E. Spallucci, Planck’s uncertainty principle and the saturation of Lorentz boosts by Planckian black holes, http://www.csupomona.edu/ aaurilia/planck.html (2004).
  16. 16.
    R.J. Adler, Am. J. Phys. 78, 925 (2010) arXiv:1001.1205.ADSCrossRefGoogle Scholar
  17. 17.
    G. Dvali, C. Gomez, Self-Completeness of Einstein Gravity, arXiv:1005.3497.
  18. 18.
    G. Dvali, S. Folkerts, C. Germani, Phys. Rev. D 84, 024039 (2011) arXiv:1006.0984.ADSCrossRefGoogle Scholar
  19. 19.
    A. Bonanno, M. Reuter, Phys. Rev. D 62, 043008 (2000) hep-th/0002196.ADSCrossRefGoogle Scholar
  20. 20.
    P. Nicolini, J. Phys. A 38, L631 (2005) hep-th/0507266.MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006) gr-qc/0510112.MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    L. Modesto, Class. Quantum Grav. 23, 5587 (2006) gr-qc/0509078.MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    L. Modesto, Int. J. Theor. Phys. 47, 357 (2008) gr-qc/0610074.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    E. Spallucci, A. Smailagic, P. Nicolini, Phys. Lett. B 670, 449 (2009) arXiv:0801.3519.MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    P. Nicolini, Int. J. Mod. Phys. A 24, 1229 (2009) arXiv:0807.1939.MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    P. Nicolini, E. Spallucci, Class. Quantum Grav. 27, 015010 (2010) arXiv:0902.4654.MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    L. Modesto, J.W. Moffat, P. Nicolini, Phys. Lett. B 695, 397 (2011) arXiv:1010.0680.MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    B. Carr, L. Modesto, I. Premont-Schwarz, Generalized Uncertainty Principle and Self-dual Black Holes, arXiv:1107.0708.
  29. 29.
    L. Modesto, Phys. Rev. D 86, 044005 (2012) arXiv:1107.2403 [hep-th].ADSCrossRefGoogle Scholar
  30. 30.
    L. Modesto, Super-renormalizable Higher-Derivative Quantum Gravity, arXiv:1202.0008.
  31. 31.
    P. Nicolini, Nonlocal and generalized uncertainty principle black holes, arXiv:1202.2102.
  32. 32.
    E. Spallucci, S. Ansoldi, Phys. Lett. B 701, 471 (2011) arXiv:1101.2760.MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    E. Spallucci, A. Smailagic, Phys. Lett. B 709, 266 (2012) arXiv:1202.1686.MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    R. Mann, J. Mureika, Phys. Lett. B 703, 167 (2011) arXiv:1105.5925.MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    J. Mureika, P. Nicolini, E. Spallucci, Phys. Rev. D 85, 106007 (2012) arXiv:1111.5830.ADSCrossRefGoogle Scholar
  36. 36.
    R. Casadio, O. Micu, A. Orlandi, Eur. Phys. J. C 72, 2146 (2012) arXiv:1205.6303 [hep-th].ADSCrossRefGoogle Scholar
  37. 37.
    G.’t Hooft, Dimensional reduction in quantum gravity, in Salam Fest (World Scientific Co. Singapore, 1993) gr-qc/9310026, essay dedicated to Abdus Salam.Google Scholar
  38. 38.
    D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep. 369, 327 (2002) hep-th/0204253.MathSciNetADSCrossRefzbMATHGoogle Scholar
  39. 39.
    D. Grumiller, R. Meyer, Turk. J. Phys. 30, 349 (2006) hep-th/0604049.Google Scholar
  40. 40.
    R.B. Mann, S. Ross, Class. Quantum Grav. 10, 1405 (1993) gr-qc/9208004.MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    R. Jackiw, Theor. Math. Phys. 148, 941 (2006) hep-th/0511065.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    D. Grumiller, R. Jackiw, Liouville gravity from Einstein gravity, in Recent developments in theoretical physics, edited by S. Gosh, G. Kar (World Scientific, Singapore, 2010) p. 331, arXiv:0712.3775.
  43. 43.
    R.B. Mann, A. Shiekh, L. Tarasov, Nucl. Phys. B 341, 134 (1990).ADSCrossRefGoogle Scholar
  44. 44.
    A.E. Sikkema, R.B. Mann, Class. Quantum Grav. 8, 219 (1991).MathSciNetADSCrossRefzbMATHGoogle Scholar
  45. 45.
    R.B. Mann, S. Morsink, A. Sikkema, T. Steele, Phys. Rev. D 43, 3948 (1991).MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    S.M. Morsink, R.B. Mann, Class. Quantum Grav. 8, 2257 (1991).MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    R.B. Mann, T.G. Steele, Class. Quantum Grav. 9, 475 (1992).MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    R. Jackiw, Liouville field theory: a two-dimensional model for gravity?, in Quantum Theory Of Gravity, edited by S. Christensen (Adam Hilgar, Bristol, 1984) pp. 403--420.Google Scholar
  49. 49.
    D. Cangemi, R. Jackiw, Phys. Rev. Lett. 69, 233 (1992) hep-th/9203056.MathSciNetADSCrossRefzbMATHGoogle Scholar
  50. 50.
    R.B. Mann, Nucl. Phys. B 418, 231 (1994) hep-th/9308034.ADSCrossRefzbMATHGoogle Scholar
  51. 51.
    J.R. Mureika, P. Nicolini, Phys. Rev. D 84, 044020 (2011) arXiv:1104.4120.ADSCrossRefGoogle Scholar
  52. 52.
    M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992) hep-th/9204099.MathSciNetADSCrossRefzbMATHGoogle Scholar
  53. 53.
    X. Calmet, G. Landsberg, Lower Dimensional Quantum Black Holes, arXiv:1008.3390.
  54. 54.
    CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 697, 434 (2011) arXiv:1012.3375.ADSCrossRefGoogle Scholar
  55. 55.
    CMS Collaboration (S. Chatrchyan et al.), JHEP 04, 061 (2012) arXiv:1202.6396.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsLoyola Marymount UniversityLos AngelesUSA
  2. 2.Frankfurt Institute for Advanced Studies (FIAS) & Institut für Theoretische PhysikJ. W. Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations