Advertisement

Dark matter explanation from quasi-metric gravity

  • Dag Østvang
Regular Article

Abstract

The gravitational field of an isolated, axisymmetric flat disk of spinning dust is calculated approximatively in the weak-field limit of quasi-metric gravity. Boundary conditions single out the exponential disk as a “preferred” physical surface density profile. Moreover, collective properties of the disk, in the form of an extra “induced associated” surface density playing the role of “dark matter” also emerge. Taken as an idealized model of spiral galaxy thin disks, it is shown that including this “dark matter” into the model as a gravitating source yields asymptotically flat rotation curves and a correspondence with MOND.

Keywords

Dark Matter Surface Density Rotation Curve Spiral Galaxy Lorentzian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Aguirre, C.P. Burgess, A. Friedland, D. Nolte, Class. Quantum Grav. 18, R223 (2001)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Østvang, Gravit. Cosmol. 11, 205 (2005) gr-qc/0112025MathSciNetADSGoogle Scholar
  3. 3.
    D. Østvang, Doctoral thesis (NTNU, Trondheim, 2001) gr-qc/0111110Google Scholar
  4. 4.
    D. Østvang, Gravit. Cosmol. 13, 1 (2007) gr-qc/0201097MathSciNetADSGoogle Scholar
  5. 5.
    D. Østvang, Acta Phys. Pol. B 39, 1849 (2008) gr-qc/0510085ADSGoogle Scholar
  6. 6.
    A. Toomre, Astrophys. J. 138, 385 (1963)MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Binney, S. Tremaine, Galactic dynamics (Princeton University Press, Princeton, NJ, 1987)Google Scholar
  8. 8.
    M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover Publications Inc., New York, 1972)Google Scholar
  9. 9.
    A.J. Jerri, Integral and discrete transformations with applications and error analysis (Marcel Dekker Inc., New York, 1992)Google Scholar
  10. 10.
    G.N. Watson, J. London Math. Soc. 8, 289 (1933)CrossRefzbMATHGoogle Scholar
  11. 11.
    S.S. McGaugh, Astrophys. J. 632, 859 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Flores et al., Astron. Astrophys. 455, 107 (2006) astro-ph/0603563ADSCrossRefGoogle Scholar
  13. 13.
    M. Puech et al., Astron. Astrophys. 510, A68 (2010) arXiv:0903.3961 ADSCrossRefGoogle Scholar
  14. 14.
    S.S. McGaugh, J. Wolf, Astrophys. J. 722, 248 (2010) arXiv:1003.3448 ADSCrossRefGoogle Scholar
  15. 15.
    A. Romanowsky et al., Science 301, 1696 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    T. Bridges et al., Mon. Not. R. Acad. Sci. 373, 157 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    D. Clowe et al., Astrophys. J. 648, L109 (2006) astro-ph/0608407ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dag Østvang
    • 1
  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations