Advertisement

Resistive plate chambers in positron emission tomography

  • Paulo Crespo
  • Alberto Blanco
  • Miguel Couceiro
  • Nuno C. Ferreira
  • Luís Lopes
  • Paulo Martins
  • Rui Ferreira MarquesEmail author
  • Paulo Fonte
Regular Article
Part of the following topical collections:
  1. Focus Point on Recent advances and applications of Resistive Plate Chambers

Abstract

Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

Keywords

Root Mean Square Error Resistive Plate Chamber Noise Equivalent Count Rate Pickup Electrode Charge Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.J. Townsend, The Theory of Ionization of Gases by Collision (Constable, London, 1910).Google Scholar
  2. 2.
    A. Blanco, A small animal PET prototype with sub-millimetre spatial resolution based on tRPCs, PhD thesis, Universidad de Santiago de Compostela, Spain (December 2012).Google Scholar
  3. 3.
    R. Santonico, R. Cardarelli, Nucl. Instrum. Methods 187, 377 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    Y.N. Pestov, Timing below 100 ps with spark counters, in 36th International Winter Meeting on Nuclear Physics Bormio, Italy, 1998, pp. 604--621.Google Scholar
  5. 5.
    P. Fonte, IEEE Trans. Nucl. Sci. 49, 881 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    R. Cardarelli, R. Santonico, A. di Biagio, A. Lucci, Nucl. Instrum. Methods A 263, 20 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    R. Cardarelli, A. di Ciaccio, R. Santonico, Nucl. Instrum. Methods A 333, 399 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    G. Carlino, Sci. Acta. 13, 269 (1998).Google Scholar
  9. 9.
    K. Abe, K. Abe, H. Hanada, H. Haitani, Y. Hoshi, Y. Inoue, Sci. Acta. 13, 281 (1998).Google Scholar
  10. 10.
    E. Cerron Zeballos, I. Crotty, D. Hatzifotiadou, J. Lamas-Valverde, S. Neupane, M.C.S. Williams, A. Zichichi, Nucl. Instrum. Methods A 374, 132 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    P. Fonte, A. Smirnitsky, M. Williams, Nucl. Instrum. Methods A 443, 201 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    A. Blanco, N. Carolino, C.M.B.A. Correia, L. Fazendeiro, N.C. Ferreira, M.F.F. Marques, R. Ferreira Marques, P. Fonte, C. Gil, M.P. Macedo, IEEE Trans. Nucl. Sci. 53, 2489 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1984).Google Scholar
  14. 14.
    S.C. Haydon, Electrical Breakdown of Gases (MacMillan, London, 1973).Google Scholar
  15. 15.
    I. Kitayama, H. Sakai, Y. Teramoto, S. Chinomi, Y. Inoue, E. Nakano, T. Takahashi, Nucl. Instrum. Methods A 424, 474 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    A. Semak, V. Ammosov, V. Gapienko, A. Ivalinov, V. Koreshev, A. Kulemzin, Y. Sviridov, V. Zaets, E. Gushin, S. Somov, Nucl. Instrum. Methods A 456, 50 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    P. Fonte, N. Carolino, L. Costa, R. Ferreira Marques, S. Mendirata, V. Peskov, A. Policarpo, Nucl. Instrum. Methods A 431, 154 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    R. Arnaldi et al., Nucl. Instrum. Methods A 456, 73 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    C. Bacci et al., Nucl. Instrum. Methods A 443, 342 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    J.T. Bromley, Investigation of the operation of Resitive Plate Chambers, MSc. thesis, University of Manchester (1994).Google Scholar
  21. 21.
    J. Neves, Desenvolvimento de um protótipo RPC-PET, MSc. thesis, Universidade de Coimbra, 2008 (in Portuguese).Google Scholar
  22. 22.
    P. Camarri, R. Cardarelli, A. Di Ciaccio, R. Santonico, Nucl. Instrum. Methods A 414, 317 (1998).CrossRefADSGoogle Scholar
  23. 23.
    V. Koreshev, V. Ammosov, A. Ivanilov, Y. Sviridov, V. Zaets, A. Semak, Nucl. Instrum. Methods A 456, 46 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    P. Fonte, IEEE Trans. Nucl. Sci. 43, 2135 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    M. Abbrescia, A. Colaleo, G. Iaselli, F. Loddo, M. Maggi, B. Marangelli, S. Natali, S. Nuzzo, G. Pugliese, A. Ranieri, F. Romano, S. Altieri, G. Bruno, G. Gianini, S.P. Ratti, L. Viola, P. Vitulo, Nucl. Phys. B 78, 459 (1999).CrossRefGoogle Scholar
  26. 26.
    P. Fonte, V. Peskov, Nucl. Instrum. Methods A 477, 17 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    P. Fonte, Nucl. Instrum. Methods A 456, 6 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    S. Ramo, Currents induced by electron motion, in Proceedings of the IRE, Vol. 27 (1939) pp. 584--585, to be published in IEEE Transactions on Nuclear Science, DOI:10.1109/NSSMIC.2002.1239467.
  29. 29.
    M. Couceiro, P. Crespo, R. Ferreira Marques, P. Fonte, Scatter fraction, count rates, and noise equivalent count rate of an RPC TOF-PET system: Simulation study following the NEMA NU2-2001 standards, in Conference Records 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Anaheim, CA, USA, 2012, M10--32.Google Scholar
  30. 30.
    A. Blanco, M. Couceiro, P. Crespo, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Lopes, J.A. Neves, Nucl. Instrum. Methods A 602, 780 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    M. Couceiro, A. Blanco, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Lopes, Nucl. Instrum. Methods A 580, 915 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    A. Pullia, W. Müller, C. Boiano, R. Bassini, IEEE Trans. Nucl. Sci. 49, 3269 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    A. Gouvêa, Medida da resolução temporal de um detector gasoso RPC destinado a TOF-PET, MSc thesis, Universidade de Coimbra (2007) (in Portuguese).Google Scholar
  34. 34.
    A. Blanco, V. Chepel, R. Ferreira Marques, P. Fonte, M.I. Lopes, V. Peskov, A. Policarpo, Nucl. Instrum. Methods A 508, 88 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    A. Blanco, P. Fonte, L. Lopes, P. Martins, J. Michel, M. Palka, M. Kajetanowicz, G. Korcyl, M. Traxler, R. Ferreira Marques, JINST 7, P11012 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    N.N. Shehad, Small animal PET camera design based on 2-mm straw detectors, in Conference Record of the 2006 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) San Diego, CA, USA, 2006, pp. 2462--2468, DOI:10.1109/NSSMIC.2006.354410.
  37. 37.
    P. Martins, A. Blanco, P. Crespo, Achieving 0.6-mm FWHM spatial resolution with an RPC-based small-animal PET prototype, in 2013 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Seul, Korea, 2013, in preparation.Google Scholar
  38. 38.
    J. Michel, M. Böhmerb, M. Kajetanowicz, G. Korcyl, L. Maier, M. Palkad, J. Stroth, A. Tarantola, M. Traxler, C. Ugur, S. Yurevich, JINST 6, c12056 (2011).CrossRefGoogle Scholar
  39. 39.
    P. Martins, P. Crespo, R. Ferreira Marques, M. Kajetanowicz, G. Korcyl, L. Lopes, J. Michel, M. Palka, M. Traxler, P. Fonte, Experimental sub-millimeter resolution with a small-animal RPC-PET prototype, in Conference Records 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Anaheim, CA, USA, 2012, M21--12, to be published in IEEE Transactions on Nuclear Science.Google Scholar
  40. 40.
    P. Crespo, J. Reis, M. Couceiro, A. Blanco, N.C. Ferreira, R. Ferreira Marques, P. Martins, P. Fonte, IEEE Trans. Nucl. Sci. 59, 520 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    L. Eriksson, D.W. Townsend, M. Conti, C.L. Melcher, M. Eriksson, B.W. Jakoby, H. Rothfuss, M.E. Casey, B. Bendriem, Potentials for large axial field of view positron camera systems, in Conference Records 2011 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Dresden, Germany, 2008, pp. 1632--1636, DOI:10.1109/NSSMIC.2006.354410.
  42. 42.
    National Electrical Manufacturers Association, Nema Standards Publication NU 2-2001, Performance measurements of positron emission tomographs (Rosslyn, VA, 2001).Google Scholar
  43. 43.
    M. Daube-Witherspoon, J. Karp, M. Casey, F. DiFilippo, H. Hines, G. Muehllehner, V. Simcic, C. Stearns, L.E. Adam, S. Kohlmeyer, V. Sossi, J. Nucl. Med. 43, 1398 (2002).Google Scholar
  44. 44.
    C.M. Kao, Q. Xie, Y. Dong, L. Wan, C.T. Chen, IEEE Trans. Nucl. Sci. 56, 2678 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    V. Kapoor, B.M. McCook, F.S. Torok, Radiographics 24, 523 (2004).CrossRefGoogle Scholar
  46. 46.
    S. Robinson, P.J. Julyan, D.L. Hastings, J. Zweit, Phys. Med. Biol. 49, 5505 (2004).CrossRefGoogle Scholar
  47. 47.
    O. Barret, T.A. Carpenter, J.C. Clark, R.E. Ansorge, T.D. Fryer, Phys. Med. Biol. 50, 4823 (2005).CrossRefGoogle Scholar
  48. 48.
    S.G. Khohlmyer, C.W. Stearns, P.E. Kinahan, T.K. Lewellen, NEMA NU2-2001 performance results for the GE Advance PET system, in Conference Records 2002 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Norfolk, VA, USA, 2002, pp. 890--894, DOI:10.1109/NSSMIC.2002.1239467.
  49. 49.
    W. Moses, IEEE Trans. Nucl. Sci. 50, 1325 (2003).MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    J. Karp, S. Surti, M. Daube-Witherspoon, G. Muehllehner, J. Nucl. Med. 49, 462 (2008).CrossRefGoogle Scholar
  51. 51.
    G. El Fakhri, S. Surti, C. Trott, J. Scheuermann, J. Karp, J. Nucl. Med. 52, 347 (2011).CrossRefGoogle Scholar
  52. 52.
    M. Daube-Witherspoon, S. Surti, A. Perkins, M.W.C.C.M. Kyba, R. Wiener et al., Phys. Med. Biol. 55, 45 (2010).CrossRefGoogle Scholar
  53. 53.
    S. Strother, M. Casey, E. Hoffman, IEEE Trans Nucl. Sci. 37, 783 (1990).ADSCrossRefGoogle Scholar
  54. 54.
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., Nucl. Instrum. Methods A 506, 250 (2003).ADSCrossRefGoogle Scholar
  55. 55.
    J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).ADSCrossRefGoogle Scholar
  56. 56.
    S. Surti, A. Kuhn, M.E. Werner, A.E. Perkins, J. Kolthammer, J.S. Karp, J. Nucl. Med. 48, 471 (2007).Google Scholar
  57. 57.
    P. Martins, M. Couceiro, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Mendes, P. Crespo, On lesion detectability by means of 300-ps-FWHM TOF whole-body RPC-PET: an experiment-based simulation study, in Conference Records 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Anaheim, CA, USA, 2012, M09--54, to be published in IEEE Transactions on Nuclear Science.Google Scholar
  58. 58.
    W.P. Segars, Development of a new dynamic NURBS based cardiac-torso (NCAT) phantom, PhD thesis, The University of North Carolina (May 2001).Google Scholar
  59. 59.
    M. Phelps, J. Mazziotta, Science 228, 799 (1985).ADSCrossRefGoogle Scholar
  60. 60.
    J. Zhang, P.D. Olcott, G. Chinn, A.M.K. Foudray, C.S. Levin, Med. Phys. 34, 689 (2007).CrossRefGoogle Scholar
  61. 61.
    P. Rodrigues, A. Trindade, J. Varela, JINST 2, P01004 (2007).ADSCrossRefGoogle Scholar
  62. 62.
    A. Trindade, P. Almeida, F. Balau, N. Ferreira, S. Fetal, F. Fraga, Clear-PEM: Monte Carlo performance and image reconstruction studies, in Conference Record of the 2003 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Portland, OR, USA, 2003, M3--118, DOI:10.1109/NSSMIC.2003.1352254.
  63. 63.
    J. Reis, Simulação da biodistribuição, aniquilação e escape de fotões PET no corpo humano, MSc thesis, Universidade de Coimbra (2008) (in Portuguese).Google Scholar
  64. 64.
    J. Mourik, F. van Velden, M. Lubberink, R. Kloet, B. van Berckel, A. Lammertsma, R. Boellaard, NeuroImage 43, 676 (2008).CrossRefGoogle Scholar
  65. 65.
    P. Martins, M. Couceiro, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Mendes, P. Crespo, A direct time-of-flight reconstruction for whole-body single-bed RPC-PET: results from lesion and anthropomorphic simulated data, in Conference Records 2011 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Valencia, Spain, 2011, pp. 2610--2616, DOI:10.1109/NSSMIC.2011.6152701.
  66. 66.
    P. Crespo, G. Shakirin, F. Fiedler, W. Enghardt, A. Wagner, Phys. Med. Biol 52, 6795 (2007).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paulo Crespo
    • 1
    • 2
  • Alberto Blanco
    • 1
  • Miguel Couceiro
    • 1
    • 3
  • Nuno C. Ferreira
    • 4
    • 5
  • Luís Lopes
    • 1
  • Paulo Martins
    • 1
    • 2
  • Rui Ferreira Marques
    • 1
    • 2
    Email author
  • Paulo Fonte
    • 1
    • 3
  1. 1.LIP - Laboratório de Instrumentação e Física Experimental de Partículas, Rua Larga, Physics DepartmentUniversity of CoimbraCoimbraPortugal
  2. 2.Physics DepartmentUniversity of CoimbraCoimbraPortugal
  3. 3.ISEC - Instituto Superior de Engenharia de CoimbraCoimbraPortugal
  4. 4.IBILI - Instituto Biomédico de Investigação da Luz e da Imagem, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  5. 5.ICNAS - Instituto de Ciências Nucleares Aplicadas à SaúdeUniversity of CoimbraCoimbraPortugal

Personalised recommendations