Advertisement

The gravitational self-energy of a spherical shell

The absence of Newtonian black holes and some remarks on the classical electron radius
  • G. DillonEmail author
Regular Article
  • 127 Downloads

Abstract

According to Einstein’s mass-energy equivalence, a body with a given mass extending in a large region of space, will get a smaller mass when confined into a smaller region, because of its own gravitational energy. The classical self-energy problem has been studied in the past in connection with the renormalization of a charged point particle. Still exact consistent solutions have not been thoroughly discussed in the simpler framework of Newtonian gravity. Here we exploit a spherically symmetrical shell model and find two possible solutions, depending on some additional assumption. The first solution goes back to Arnowitt, Deser and Misner (1960). The second is new. When applied to a spherical shell of a given “bare” mass M0, both solutions lead to a vanishing “renormalized” mass for a vanishing radius R of the shell. As a consequence the condition for the existence of a Newtonian black hole will never be met for finite R . When applied to the e.m. mass of a pure static electric charge the second solution yields a new vanishingly small value (10−55cm) for the classical electron radius.

Keywords

Gravitational Potential Spherical Shell Test Particle Test Mass Gravitational Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Southerns, Proc. R. Soc. A 84, 325 (1910).ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Zeeman, Proc. Sect. Sci. K. ned. Akad. Wet. 20, 542 (1917).ADSGoogle Scholar
  3. 3.
    R. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. Lett. 4, 375 (1960).ADSCrossRefGoogle Scholar
  4. 4.
    R. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. 118, 1100 (1960).MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. 120, 313 (1960).MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    A.K. Raychaudhuri, Gen. Relativ. Gravit. 24, 281 (1992).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M.A. Markov, Sov. Phys. JETP 37, 561 (1972).ADSGoogle Scholar
  8. 8.
    J. Michell, Philos. Trans. 74, 35 (1784).CrossRefGoogle Scholar
  9. 9.
    P.S. de Laplace, Exposition du Système du Monde (Paris, 1796).Google Scholar
  10. 10.
    G. Dillon, arXiv:1303.2577 (2013).
  11. 11.
    P. Christillin, Eur. Phys. J. Plus 126, 48 (2011).CrossRefGoogle Scholar
  12. 12.
    J.D. Jackson, Classical electrodynamics (Wiley, New York, 1975) Chapt. 17.Google Scholar
  13. 13.
    M. Visser, Phys. Lett. A 139, 99 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di GenovaINFN, Sezione di GenovaGenovaitaly

Personalised recommendations