Advertisement

The classical ether-drift experiments: A modern re-interpretation

  • M. ConsoliEmail author
  • C. Matheson
  • A. Pluchino
Regular Article

Abstract

The condensation of elementary quanta and their macroscopic occupation of the same quantum state, say k = 0 in some reference frame Σ, is the essential ingredient of the degenerate vacuum of present-day elementary particle physics. This represents a sort of “quantum ether” which characterizes the physically realized form of relativity and could play the role of preferred reference frame in a modern re-formulation of the Lorentzian approach. In spite of this, the so-called “null results” of the classical ether-drift experiments, traditionally interpreted as confirmations of Special Relativity, have so deeply influenced scientific thought as to prevent a critical discussion on the real reasons underlying its alleged supremacy. In this paper, we argue that this traditional null interpretation is far from obvious. In fact, by using Lorentz transformations to connect the Earth’s frame to Σ, the small observed effects point to an average Earth’s velocity of about 300 km/s, as in most cosmic motions. A common feature is the irregular behaviour of the data. While this has motivated, so far, their standard interpretation as instrumental artifacts, our new re-analysis of the very accurate Joos experiment gives clear indications for the type of Earth’s motion associated with the CMB anisotropy and leaves little space for this traditional interpretation. The new explanation requires instead a view of the vacuum as a stochastic medium, similar to a fluid in a turbulent state of motion, in agreement with basic foundational aspects of both quantum physics and relativity. The overall consistency of this picture with the present experiments with vacuum optical resonators and the need for a new generation of dedicated ether-drift experiments are also emphasized.

Keywords

Cosmic Microwave Background Lorentz Transformation Physical Vacuum Sidereal Time Fringe Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Einstein, Ann. Phys. 17, 891 (1905).CrossRefzbMATHGoogle Scholar
  2. 2.
    H.A. Lorentz, Proc. Acad. Sci. Amsterdam 6, (1904).Google Scholar
  3. 3.
    H. Poincaré, C. R. Acad. Sci. Paris 140, 1504 (1905) and La Science et l’Hypothese.zbMATHGoogle Scholar
  4. 4.
    H.A. Lorentz, The Theory of Electrons, edited by B.G. Teubner (Leipzig, 1909).Google Scholar
  5. 5.
    J.S. Bell, How to teach special relativity, in Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987) p. 67.Google Scholar
  6. 6.
    H.R. Brown, O. Pooley, The origin of the space-time metric: Bell’s Lorentzian pedagogy and its significance in general relativity, in Physics meets Philosophy at the Planck Scale, edited by C. Callender, N. Hugget (Cambridge University Press, 2000) arXiv:gr-qc/9908048.
  7. 7.
    M. Consoli, E. Costanzo, Phys. Lett. A 333, 355 (2004).ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Liberati, S. Sonego, M. Visser, Ann. Phys. 298, 167 (2002).MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    V. Scarani et al., Phys. Lett. A 276, 1 (2000).MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    G.E. Volovik, Phys. Rep. 351, 195 (2001).MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    G.E. Volovik, Found. Phys. 33, 349 (2003).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Chadha, H.B. Nielsen, Nucl. Phys. 217, 125 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    C.D. Froggatt, H.B. Nielsen, Origin of Symmetries (World Scientific, 1991).Google Scholar
  14. 14.
    J.A. Wheeler, in Relativity, Groups and Topology, edited by B.S. DeWitt, C.M. DeWitt (Gordon and Breach, New York, 1963) p. 315.Google Scholar
  15. 15.
    A.A. Migdal, Int. J. Mod. Phys. A 9, 1197 (1994).MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    V. Jejjala, D. Minic, Y.J. Ng, C.H. Tze, Int. J. Mod. Phys. D 19, 2311 (2010).MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Y.J. Ng, Various Facets of Spacetime Foam, in Proceedings of the Third Conference on Time and Matter, Budva, Montenegro 2010, arXiv:1102.4109 [gr-qc].
  18. 18.
    G. Amelino-Camelia, Nature 418, 34 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002).MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Amelino-Camelia, Symmetry 2, 230 (2010).CrossRefGoogle Scholar
  21. 21.
    P. Jizba, H. Kleinert, Phys. Rev. D 82, 085016 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    G. ’t Hooft, In Search of the Ultimate Building Blocks (Cambridge University Press, 1997).Google Scholar
  23. 23.
    M. Consoli, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133 (2000) hep-ph/9905427.ADSGoogle Scholar
  24. 24.
    M. Consoli, A. Pagano, L. Pappalardo, Phys. Lett. A 318, 292 (2003).ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Consoli, E. Costanzo, Eur. Phys. J. C 54, 285 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    M. Consoli, E. Costanzo, Eur. Phys. J. C 55, 469 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    See, for instance, R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and all that (W.A. Benjamin, New York, 1964).Google Scholar
  28. 28.
    Y.B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968).ADSCrossRefGoogle Scholar
  29. 29.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    C. Barcelo, S. Liberati, M. Visser, Class. Quantum Grav. 18, 3595 (2001).MathSciNetADSCrossRefzbMATHGoogle Scholar
  31. 31.
    M. Visser, C. Barcelo, S. Liberati, Gen. Relativ. Gravit. 34, 1719 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Consoli, Class. Quantum Grav. 26, 225008 (2009).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    R.P. Feynman, in Superstrings: A Theory of Everything?, edited by P.C.W. Davies, J. Brown (Cambridge University Press, 1997) p. 201.Google Scholar
  34. 34.
    C. Eckart, Phys. Rev. 58, 919 (1940).ADSCrossRefGoogle Scholar
  35. 35.
    H. Müller et al., Appl. Phys. B 77, 719 (2003) for a comprehensive review.ADSCrossRefGoogle Scholar
  36. 36.
    J. Ehlers, C. Lämmerzahl (Editors), Special Relativity, Lect. Notes Phys. (Springer, New York, 2006).Google Scholar
  37. 37.
    V.W. Hughes, H.G. Robinson, V. Beltran-Lopez, Phys. Rev. Lett. 4, 342 (1960).ADSCrossRefGoogle Scholar
  38. 38.
    R.W.P. Drever, Phil. Mag. 6, 683 (1961).ADSCrossRefGoogle Scholar
  39. 39.
    C.M. Will, The Confrontation between General Relativity and Experiment, arXiv:gr-qc/0510072.
  40. 40.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).Google Scholar
  41. 41.
    V.C. Ballenegger, T.A. Weber, Am. J. Phys. 67, 599 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949).ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    R.M. Mansouri, R.U. Sexl, Gen. Relativ. Gravit. 8, 497 (1977).ADSCrossRefGoogle Scholar
  44. 44.
    A. Brillet, J.L. Hall, Phys. Rev. Lett. 42, 549 (1979).ADSCrossRefGoogle Scholar
  45. 45.
    H. Müller et al., Phys. Rev. Lett. 91, 020401 (2003).CrossRefGoogle Scholar
  46. 46.
    S. Herrmann et al., Phys. Rev. Lett. 95, 150401 (2005).ADSCrossRefGoogle Scholar
  47. 47.
    P. Antonini et al., Phys. Rev. A 71, 050101(R) (2005).ADSCrossRefGoogle Scholar
  48. 48.
    Ch. Eisele et al., Opt. Comm. 281, 1189 (2008).ADSCrossRefGoogle Scholar
  49. 49.
    S. Herrmann et al., Phys. Rev. D 80, 105011 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    Ch. Eisele, A. Newski, S. Schiller, Phys. Rev. Lett. 103, 090401 (2009).ADSCrossRefGoogle Scholar
  51. 51.
    M. Consoli, E. Costanzo, Nuovo Cimento B 119, 393 (2004).ADSGoogle Scholar
  52. 52.
    J. Shamir, R. Fox, Nuovo Cimento B 62, 258 (1969).CrossRefADSGoogle Scholar
  53. 53.
    R. De Abreu, V. Guerra, Relativity Einstein’s Lost Frame (Extra]muros, 2005).Google Scholar
  54. 54.
    H. Müller, Phys. Rev. D 71, 045004 (2005).ADSCrossRefGoogle Scholar
  55. 55.
    J.J. Nassau, P.M. Morse, Astrophys. J. 65, 73 (1927).ADSCrossRefGoogle Scholar
  56. 56.
    O.V. Troshkin, Physica A 168, 881 (1990).ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    H.E. Puthoff, Linearized turbulent flow as an analog model for linearized General Relativity, arXiv:0808.3404 [physics.gen-ph].
  58. 58.
    T.D. Tsankov, Classical Electrodynamics and the Turbulent Aether Hypothesis, preprint February 2009.Google Scholar
  59. 59.
    M. Consoli, A. Pluchino, A. Rapisarda, Chaos, Solitons Fractals 44, 1089 (2011).ADSCrossRefGoogle Scholar
  60. 60.
    M. Consoli, Phys. Lett. A 376, 3377 (2012).ADSCrossRefGoogle Scholar
  61. 61.
    A.A. Michelson, E.W. Morley, Am. J. Sci. 34, 333 (1887).CrossRefGoogle Scholar
  62. 62.
    W. Sutherland, Phil. Mag. 45, 23 (1898) A. Righi, Nuovo Cimento XVI.CrossRefzbMATHGoogle Scholar
  63. 63.
    A.A. Michelson et al., Astrophys. J. 68, 341 (1928).ADSCrossRefGoogle Scholar
  64. 64.
    R.J. Kennedy, Phys. Rev. 47, 965 (1935).ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    D.C. Miller, Rev. Mod. Phys. 5, 203 (1933).ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    W.M. Hicks, Phil. Mag. 3, 9 (1902).CrossRefzbMATHGoogle Scholar
  67. 67.
    M. Born, Einstein’s Theory of Relativity (Dover Publ., New York, 1962).Google Scholar
  68. 68.
    R.S. Shankland et al., Rev. Mod. Phys. 27, 167 (1955).ADSCrossRefGoogle Scholar
  69. 69.
    M.A. Handshy, Am. J. Phys. 50, 987 (1982).ADSCrossRefGoogle Scholar
  70. 70.
    E.W. Morley, D.C. Miller, Phil. Mag. 9, 680 (1905).CrossRefGoogle Scholar
  71. 71.
    K.K. Illingworth, Phys. Rev. 30, 692 (1927).ADSCrossRefGoogle Scholar
  72. 72.
    H.A. Múnera, Apeiron 5, 37 (1998).Google Scholar
  73. 73.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 4 (1940) (English translation in Proc. R. Soc. A 434.Google Scholar
  74. 74.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959) Chapt. III.Google Scholar
  75. 75.
    J.C.H. Fung et al., J. Fluid Mech. 236, 281 (1992).MathSciNetADSCrossRefzbMATHGoogle Scholar
  76. 76.
    K.R. Sreenivasan, Rev. Mod. Phys. 71, S383 (1999).CrossRefGoogle Scholar
  77. 77.
    C. Beck, Phys. Rev. Lett. 98, 064502 (2007).ADSCrossRefGoogle Scholar
  78. 78.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009).Google Scholar
  79. 79.
    J. DeMeo, Dayton C. Miller Revisited, in Should the Laws of Gravitation be Reconsidered?, edited by H.A. Múnera (Apeiron, Montreal, 2011) pp. 285-315.Google Scholar
  80. 80.
    T. Roberts, An Explanation of Dayton Miller’s Anomalous “Ether Drift” Result, arXiv:physics/0608238.
  81. 81.
    F. James, MINUIT: Function minimization and error analysis, CERN Computing and Networks Division, Long Writeup D506, Geneva 1994.Google Scholar
  82. 82.
    M. von Laue, Handb. Exp. Phys. XVIII, 95 (1926).Google Scholar
  83. 83.
    H. Thirring, Z. Phys. 35, 723 (1926) Nature 118.ADSCrossRefzbMATHGoogle Scholar
  84. 84.
    A.A. Michelson, F.G. Pease, F. Pearson, Nature 123, 88 (1929).ADSCrossRefGoogle Scholar
  85. 85.
    A.A. Michelson, F.G. Pease, F. Pearson, J. Opt. Soc. Am. 18, 181 (1929).ADSCrossRefGoogle Scholar
  86. 86.
    F.G. Pease, Publ. Astron. Soc. Pac. XLII, 197 (1930).ADSCrossRefGoogle Scholar
  87. 87.
    G. Joos, Ann. Phys. 7, 385 (1930).CrossRefGoogle Scholar
  88. 88.
    G. Joos, Naturwissenschaften 38, 784 (1931).ADSCrossRefGoogle Scholar
  89. 89.
    G. Joos, D. Miller, Phys. Rev. 45, 114 (1934).ADSCrossRefGoogle Scholar
  90. 90.
    Loyd S. Swenson jr., J. Hist. Astron. 1, 56 (1970).ADSGoogle Scholar
  91. 91.
    A.A. Michelson, Am. J. Sci. 22, 120 (1881).CrossRefGoogle Scholar
  92. 92.
    R. Tomaschek, Ann. Phys. 73, 105 (1924).CrossRefzbMATHGoogle Scholar
  93. 93.
    A. Piccard, E. Stahel, C. R. 183, 420 (1926) Naturwissenschaften 14.Google Scholar
  94. 94.
    A. Piccard, E. Stahel, C. R. 185, 1198 (1927) Naturwissenschaften 16.zbMATHGoogle Scholar
  95. 95.
    T.S. Jaseja et al., Phys. Rev. 133, A1221 (1964).ADSCrossRefGoogle Scholar
  96. 96.
    Zhou L.L., B.-Q. Ma, Mod. Phys. Lett. A 25, 2489 (2010).MathSciNetADSCrossRefzbMATHGoogle Scholar
  97. 97.
    V.G. Gurzadyan, arXiv:1004.2867 [physics.acc-ph] and references therein, in Proceedings of the 12th M. Grossmann Meeting on General Relativity (World Scientific, 2012) p. 1495.
  98. 98.
    L.L. Zhou, B.-Q. Ma, Astropart. Phys. 36, 37 (2012) arXiv:1009.1675 [hep-ph].ADSCrossRefGoogle Scholar
  99. 99.
    J.M. Jauch, K.M. Watson, Phys. Rev. 74, 950 (1948).MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sezione di CataniaIstituto Nazionale di Fisica NucleareCataniaItaly
  2. 2.Selwyn CollegeCambridgeUK
  3. 3.Dipartimento di Fisica e Astronomia dell’Università di CataniaCataniaItaly

Personalised recommendations