Advertisement

Characterization of the complexity of an ED model via information geometry

  • Chunhui Li
  • Huafei SunEmail author
  • Shicheng Zhang
Regular Article

Abstract

Characterization of the complexity of an entropic dynamical model is investigated from the viewpoint of information geometry. By introducing a Riemannian metric with respect to the underlying statistical manifold, the geometric structure is achieved. Based on the general construction, the instability of the geodesic spreads on this manifold is analyzed via the associated Jacobi vector field. Entropic dynamical models with microstates spanning on its submanifold are studied similarly.

Keywords

Manifold Probability Density Function Scalar Curvature Geometric Structure Inductive Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Amari, Lecture Notes in Statistics, Vol. 28 (Springer-Verlag, 1985)Google Scholar
  2. 2.
    S. Amari, Comput. Syst. Theory 20, 53 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. Caticha, AIP Conf. Proc. 617, 302 (2002)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S. Amari, H. Nagaoka, Methods of Information Geometry (Oxford University Press, Oxford, 2000)Google Scholar
  5. 5.
    F. De. Felice, C.J.S. Clarke, Relativity on Curved Manifolds (Cambridge University Press, Cambridge, 1990)Google Scholar
  6. 6.
    T. Li, L. Peng, H. Sun, Beitr. Algebra Geom. 49, 217 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. Caticha, A. Giffin, AIP Conf. Proc. 872, 31 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. Caticha, AIP Conf. Proc. 707, 75 (2003)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A. Caticha, Phys. Rev. E 70, 046127 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A. Caticha, AIP Conf. Proc. 803, 355 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. Caticha, Towards a Statistical Geometrodynamics, in Lect. Notes Phys., Vol. 633 (Springer, 2003) pp. 103--116Google Scholar
  12. 12.
    C. Cafaro, S.A. Ali, Physica D 234, 70 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    L. Peng et al., Adv. Math. 227, 459 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. Peng, H. Sun, G. Xu, J. Math. Phys. 53, 123305 (2013)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S.A. Ali, C. Cafaro, D.-H. Kim, S. Mancini, Physica A 389, 3117 (2010)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C. Cafaro, Chaos Solitons Fractals 41, 886 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C. Cafaro, S.A. Ali, A. Giffin, AIP Conf. Proc. 872, 243 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    C. Cafaro, S.A. Ali, Electron. J. Theor. Phys. 5, 135 (2008)zbMATHGoogle Scholar
  19. 19.
    M.P. do Carmo, Riemannian Geometry (Birkhäuser, Boston, 1992)Google Scholar
  20. 20.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman & Co., San Francisco, 1973)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of MathematicsBeijing Institute of TechnologyBeijingChina
  2. 2.School of MathematicsXuzhou Normal UniversityXuzhouChina

Personalised recommendations