Advertisement

Unitary standard model from spontaneous dimensional reduction and weak boson scattering at the LHC

  • Hong-Jian He
  • Zhong-Zhi Xianyu
Regular Article

Abstract

Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by a number of quantum gravity approaches which all indicate that the spacetime dimensions get reduced at high energies. In this work, we formulate an effective theory of electroweak interactions based upon the standard model, incorporating the spontaneous reduction of space-dimensions at TeV scale. The electroweak gauge symmetry is nonlinearly realized with or without a Higgs boson. We demonstrate that the SDR ensures good high-energy behavior and predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV, the TeV scale SDR gives a natural solution to the hierarchy problem. Such a light Higgs boson can have induced anomalous gauge couplings from the TeV scale SDR. We find that the corresponding WW scattering cross sections become unitary at TeV scale, but exhibit different behaviors from that of the 4d standard model. These can be discriminated by the WW scattering experiments at the LHC.

Keywords

Higgs Boson Quantum Gravity Gauge Boson Partial Wave Spacetime Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961).Google Scholar
  2. 2.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).ADSGoogle Scholar
  3. 3.
    A. Salam, in Elementary Particle Theory, Nobel Symposium No. 8, edited by N. Svartholm (Almqvist & Wiksells, Stockholm, 1968) p. 367.Google Scholar
  4. 4.
    P.W. Higgs, Phys. Lett. 12, 132 (1964).ADSGoogle Scholar
  5. 5.
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964).MathSciNetADSGoogle Scholar
  6. 6.
    P.W. Higgs, Phys. Rev. 145, 1156 (1966).MathSciNetADSGoogle Scholar
  7. 7.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964).MathSciNetADSGoogle Scholar
  8. 8.
    G.S. Guralnik, C.R. Hagen, T.W. Kibble, Phys. Rev. Lett. 13, 585 (1964).ADSGoogle Scholar
  9. 9.
    G. ’t Hooft, Nucl. Phys. B 35, 167 (1971).ADSGoogle Scholar
  10. 10.
    G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972).MathSciNetADSGoogle Scholar
  11. 11.
    G. ’t Hooft, M. Veltman, Nucl. Phys. B 50, 318 (1972).MathSciNetADSGoogle Scholar
  12. 12.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. Lett. 30, 1268 (1973).ADSGoogle Scholar
  13. 13.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974).ADSGoogle Scholar
  14. 14.
    C.H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).ADSGoogle Scholar
  15. 15.
    D.A. Dicus, V.S. Mathur, Phys. Rev. D 7, 3111 (1973).ADSGoogle Scholar
  16. 16.
    B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. Lett. 38, 883 (1977).ADSGoogle Scholar
  17. 17.
    B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977).ADSGoogle Scholar
  18. 18.
    ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 716, 1 (2012) arXiv:1207.7214 [hep-ex].ADSGoogle Scholar
  19. 19.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 716, 30 (2012) arXiv:1207.7235 [hep-ex].ADSGoogle Scholar
  20. 20.
    See: Rencontres de Moriond 2013, http://moriond.in2p3.fr, EW Interactions and Unified Theories, March 2–9, 2013, and QCD and High Energy Interactions, March 9–16, 2013, La Thuile, Aosta valley, Italy.
  21. 21.
    M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985).ADSGoogle Scholar
  22. 22.
    M.S. Chanowitz, arXiv:hep-ph/9812215.
  23. 23.
    M.S. Chanowitz, Czech. J. Phys. B 55, 45 (2005) arXiv:hep-ph/0412203 and references therein.Google Scholar
  24. 24.
    M.S. Chanowitz, M.A. Furman, I. Hinchliffe, Nucl. Phys. B 153, 402 (1979).ADSGoogle Scholar
  25. 25.
    T. Appelquist, M.S. Chanowitz, Phys. Rev. Lett. 59, 2405 (1987).ADSGoogle Scholar
  26. 26.
    D.A. Dicus, H.J. He, Phys. Rev. D 71, 093009 (2005) hep-ph/0409131.ADSGoogle Scholar
  27. 27.
    D.A. Dicus, H.J. He, Phys. Rev. Lett. 94, 221802 (2005) hep-ph/0502178.ADSGoogle Scholar
  28. 28.
    L. Susskind, Phys. Rev. D 20, 2619 (1979).ADSGoogle Scholar
  29. 29.
    R. Dashen, H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).ADSGoogle Scholar
  30. 30.
    C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003) arXiv:hep-ph/0203079 and references therein.ADSGoogle Scholar
  31. 31.
    M.E. Peskin, arXiv:0801.1928 and references therein.
  32. 32.
    N. Arkani-Hamed, S. Dimopolous, G.R. Dvali, Phys. Lett. B 429, 263 (1998).ADSGoogle Scholar
  33. 33.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopolous, G.R. Dvali, Phys. Lett. B 436, 257 (1998).ADSGoogle Scholar
  34. 34.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).MathSciNetADSzbMATHGoogle Scholar
  35. 35.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).MathSciNetADSzbMATHGoogle Scholar
  36. 36.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Rev. Lett. 86, 4757 (2001).MathSciNetADSGoogle Scholar
  37. 37.
    C.T. Hill, S. Pokorski, J. Wang, Phys. Rev. D 64, 105005 (2001).ADSGoogle Scholar
  38. 38.
    G. ’t Hooft, Salam-festschrift 4(A), 1 (1993) arXiv:gr-qc/9310026.Google Scholar
  39. 39.
    S. Carlip, arXiv:1009.1136 [gr-qc] and references therein.
  40. 40.
    S. Carlip, arXiv:0909.3329 [gr-qc].
  41. 41.
    O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2002) arXiv:hep-th/0108040.MathSciNetADSGoogle Scholar
  42. 42.
    O. Lauscher, M. Reuter, Phys. Rev. D 66, 025026 (2002) arXiv:hep-th/0205062.MathSciNetADSGoogle Scholar
  43. 43.
    J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 95, 171301 (2005) arXiv:hep-th/0505113.ADSGoogle Scholar
  44. 44.
    J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. D 72, 064014 (2005) arXiv:hep-th/0505154.ADSGoogle Scholar
  45. 45.
    L. Modesto, Class. Quantum Grav. 26, 242002 (2009) arXiv:0812.2214 [gr-qc].MathSciNetADSGoogle Scholar
  46. 46.
    J.J. Atick, E. Witten, Nucl. Phys. B 310, 291 (1988).MathSciNetADSGoogle Scholar
  47. 47.
    P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).MathSciNetADSGoogle Scholar
  48. 48.
    P. Hořava, Phys. Rev. D 79, 084008 (2009).MathSciNetADSGoogle Scholar
  49. 49.
    J. Mureika, D. Stojkovic, Phys. Rev. Lett. 106, 101101 (2011) arXiv:1102.3434 [gr-qc].ADSGoogle Scholar
  50. 50.
    L. Anchordoqui, D.C. Dai, M. Fairbairn, G. Landsberg, D. Stojkovic, Mod. Phys. Lett. A 27, 1250021 (2012) arXiv:1003.5914 [hep-ph].ADSGoogle Scholar
  51. 51.
    L.A. Anchordoqui, D.C. Dai, H. Goldberg, G. Landsberg, G. Shaughnessy, D. Stojkovic, T.J. Weiler, Phys. Rev. D 83, 114046 (2011) arXiv:1012.1870 [hep-ph].ADSGoogle Scholar
  52. 52.
    Steven Weinberg, PoS CD 09, 001 (2009) arXiv:0908.1964 [hep-th].Google Scholar
  53. 53.
    G. Calcagni, Phys. Rev. Lett. 104, 251301 (2010) arXiv:0912.3142 [hep-th].ADSGoogle Scholar
  54. 54.
    G. Calcagni, JHEP 01, 065 (2012) arXiv:1107.5041 [hep-th] and references therein.MathSciNetADSGoogle Scholar
  55. 55.
    G. Calcagni, Adv. Theor. Math. Phys. 16, 549 (2012) arXiv:1106.5787 [hep-th].MathSciNetzbMATHGoogle Scholar
  56. 56.
    G. Calcagni, Phys. Lett. B 697, 251 (2011) arXiv:1012.1244 [hep-th].ADSGoogle Scholar
  57. 57.
    G. Calcagni, Phys. Rev. D 84, 061501 (2011) arXiv:1106.0295 [hep-th].ADSGoogle Scholar
  58. 58.
    M. Arzano, G. Calcagni, D. Oriti, M. Scalisi, Phys. Rev. D 84, 125002 (2011) arXiv:1107.5308 [hep-th].ADSGoogle Scholar
  59. 59.
    S. Matsuzaki, K. Yamawaki, Phys. Rev. D 86, 035025 (2012) arXiv:1206.6703.ADSGoogle Scholar
  60. 60.
    S. Matsuzaki, K. Yamawaki, Phys. Rev. D 86, 115004 (2012) arXiv:1209.2017.ADSGoogle Scholar
  61. 61.
    S. Matsuzaki, K. Yamawaki, Phys. Lett. B 719, 378 (2013) arXiv:1207.5911.ADSGoogle Scholar
  62. 62.
    B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, J. Terning, Eur. Phys. J. C 73, 2333 (2013) arXiv:1209.3299.ADSGoogle Scholar
  63. 63.
    O. Antipin, J. Krog, E. Molgaard, F. Sannino, arXiv:1303.7213 [hep-ph].
  64. 64.
    R.S. Chivukula, V. Koulovassilopoulos, Phys. Lett. B 309, 371 (1993) arXiv:hep-ph/9304293.ADSGoogle Scholar
  65. 65.
    V. Koulovassilopoulos, R.S. Chivukula, Phys. Rev. D 50, 3218 (1994) arXiv:hep-ph/9312317.ADSGoogle Scholar
  66. 66.
    H.J. He, Y.P. Kuang, C.P. Yuan, B. Zhang, Phys. Lett. B 554, 64 (2003) arXiv:hep-ph/0211229.ADSGoogle Scholar
  67. 67.
    H.J. He, Y.P. Kuang, C.P. Yuan, B. Zhang, in Proceedings of the ``Workshop on Physics at TeV Colliders’’, Les Houches, France, May 26--June 6, 2003, arXiv:hep-ph/0401209 and references therein.
  68. 68.
    B. Zhang, Y.P. Kuang, H.J. He, C.P. Yuan, Phys. Rev. D 67, 114024 (2003) arXiv:hep-ph/0303048.ADSGoogle Scholar
  69. 69.
    T. Han, D. Krohn, L.T. Wang, W. Zhu, JHEP 03, 082 (2010) arXiv:0911.3656.ADSGoogle Scholar
  70. 70.
    W. Siegel, Phys. Lett. B 84, 193 (1979).MathSciNetADSGoogle Scholar
  71. 71.
    G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972).MathSciNetADSGoogle Scholar
  72. 72.
    H.J. He, Y.P. Kuang, C.P. Yuan, DESY-97-056, arXiv:hep-ph/9704276.
  73. 73.
    T. Appelquist, C. Bernard, Phys. Rev. D 22, 200 (1980).ADSGoogle Scholar
  74. 74.
    A.C. Langhitano, Phys. Rev. D 22, 1166 (1980).ADSGoogle Scholar
  75. 75.
    A.C. Langhitano, Nucl. Phys. B 188, 118 (1981).ADSGoogle Scholar
  76. 76.
    S. Weinberg, Physica A 96, 327 (1979).ADSGoogle Scholar
  77. 77.
    R.S. Chivukula, D.A. Dicus, H.J. He, Phys. Lett. B 525, 175 (2002) hep-ph/0111016.MathSciNetADSzbMATHGoogle Scholar
  78. 78.
    J. Schwinger, Phys. Rev. 128, 2425 (1962).MathSciNetADSzbMATHGoogle Scholar
  79. 79.
    S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982).MathSciNetADSGoogle Scholar
  80. 80.
    S. Weinberg, Ultraviolet Divergences in Quantum Theories of Gravitation, in General Relativity: An Einstein Centenary Survey, edited by S.W. Hawking, W. Israel (Cambridge University Press, 1979) p. 790.Google Scholar
  81. 81.
    D.F. Litim, Philos. Trans. R. Soc. London Ser. A 369, 2759 (2011) arXiv:1102.4624 [hep-th].MathSciNetADSzbMATHGoogle Scholar
  82. 82.
    M. Niedermaier, M. Reuter, Living Rev. Relativ. 9, 5 (2006).ADSGoogle Scholar
  83. 83.
    M. Soldate, Phys. Lett. B 186, 321 (1987).ADSGoogle Scholar
  84. 84.
    J.L. Basdevant, Fortschr. Phys. 20, 283 (1972).Google Scholar
  85. 85.
    S.N. Gupta, Quantum Electrodynamics (Gordon and Breach, New York, 1981) pp. 191-198.Google Scholar
  86. 86.
    O. Cheyette, M.K. Gaillard, Phys. Lett. B 197, 205 (1987).ADSGoogle Scholar
  87. 87.
    N. Truong, Phys. Rev. Lett. 61, 2526 (1988).ADSGoogle Scholar
  88. 88.
    D. Dicus, W. Repko, Phys. Rev. D 42, 3660 (1990) and references therein.ADSGoogle Scholar
  89. 89.
    T. Abe, N. Chen, H.J. He, JHEP 01, 082 (2013) arXiv:1207.4103 and references therein.ADSGoogle Scholar
  90. 90.
    X.-F. Wang, arXiv:1304.2257 [hep-ph].
  91. 91.
    C. Du, H.J. He, Y.P. Kuang, B. Zhang, N.D. Christensen, R.S. Chivukula, E.H. Simmons, Phys. Rev. D 86, 095011 (2012) arXiv:1206.6022 and references therein.ADSGoogle Scholar
  92. 92.
    H.J. He et al., Phys. Rev. D 78, 031701 (2008) arXiv:0708.2588.ADSGoogle Scholar
  93. 93.
    A.S. Belyaev et al., Phys. Rev. D 80, 055022 (2009) arXiv:0907.2662.MathSciNetADSGoogle Scholar
  94. 94.
    R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981).ADSGoogle Scholar
  95. 95.
    R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).ADSGoogle Scholar
  96. 96.
    M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985).ADSGoogle Scholar
  97. 97.
    V.D. Barger, K. Cheung, T. Han, R.J.N. Phillips, Phys. Rev. D 42, 3052 (1990).ADSGoogle Scholar
  98. 98.
    J. Bagger et al., Phys. Rev. D 49, 1246 (1994) arXiv:hep-ph/9306256.ADSGoogle Scholar
  99. 99.
    J. Bagger et al., Phys. Rev. D 52, 3878 (1995) arXiv:hep-ph/9504426.ADSGoogle Scholar
  100. 100.
    M.S. Chanowitz, W. Kilgore, Phys. Lett. B 322, 147 (1994) arXiv:hep-ph/9311336.ADSGoogle Scholar
  101. 101.
    M.S. Chanowitz, W. Kilgore, Phys. Lett. B 347, 387 (1995) arXiv:hep-ph/9412275.ADSGoogle Scholar
  102. 102.
    H.J. He, Y.P. Kuang, C.P. Yuan, Phys. Rev. D 55, 3038 (1997) arXiv:hep-ph/9611316.ADSGoogle Scholar
  103. 103.
    H.J. He, Y.P. Kuang, C.P. Yuan, DESY-97-056, arXiv:hep-ph/9704276.
  104. 104.
    M.S. Chanowitz, Czech. J. Phys. B 55, 45 (2005) arXiv:hep-ph/0412203 and references therein.Google Scholar
  105. 105.
    Roshan Foadi, Francesco Sannino, Phys. Rev. D 78, 037701 (2008) arXiv:0801.0663 [hep-ph].ADSGoogle Scholar
  106. 106.
    Roshan Foadi, Matti Jarvinen, Francesco Sannino, Phys. Rev. D 79, 035010 (2009) arXiv:0811.3719 [hep-ph].ADSGoogle Scholar
  107. 107.
    P. Fischer, D.F. Litim, Phys. Lett. B 638, 497 (2006) arXiv:hep-th/0602203.MathSciNetADSzbMATHGoogle Scholar
  108. 108.
    D.F. Litim, T. Plehn, Phys. Rev. Lett. 100, 131301 (2008) arXiv:0707.3983.ADSGoogle Scholar
  109. 109.
    J. Hewett, T. Rizzo, JHEP 12, 009 (2007) arXiv:0707.3182.ADSGoogle Scholar
  110. 110.
    E. Gerwick, Eur. Phys. J. C 71, 1676 (2011) arXiv:1012.1118.ADSGoogle Scholar
  111. 111.
    E. Gerwick, D. Litim, T. Plehn, Phys. Rev. D 83, 084048 (2011) arXiv:1101.5548.ADSGoogle Scholar
  112. 112.
    X. Calmet, Mod. Phys. Lett. A 26, 1571 (2011) arXiv:1012.5529.MathSciNetADSzbMATHGoogle Scholar
  113. 113.
    J.A. Casas, J.R. Espinosa, M. Quiros, Phys. Lett. B 382, 374 (1996) arXiv:hep-ph/9603227 and references therein.ADSGoogle Scholar
  114. 114.
    T. Hambye, K. Riesselmann, Phys. Rev. D 55, 7255 (1997) arXiv:hep-ph/9610272 and references therein.ADSGoogle Scholar
  115. 115.
    C. Quigg, Annu. Rev. Nucl. Part. Sci. 59, 505 (2009) arXiv:0905.3187 and references therein, for a recent review.ADSGoogle Scholar
  116. 116.
    For example, P.P. Giardino, K. Kannike, I. Masina, M. Raidal, A. Strumia, arXiv:1303.3570 [hep-ph].
  117. 117.
    R.S. Chivukula, D.A. Dicus, H.J. He, Phys. Lett. B 525, 175 (2002) hep-ph/0111016.MathSciNetADSzbMATHGoogle Scholar
  118. 118.
    R.S. Chivukula, H.J. He, Phys. Lett. B 532, 121 (2002) hep-ph/0201164.MathSciNetADSzbMATHGoogle Scholar
  119. 119.
    R.S. Chivukula, D.A. Dicus, H.J. He, S. Nandi, Phys. Lett. B 562, 109 (2003) hep-ph/0302263.ADSGoogle Scholar
  120. 120.
    H.J. He, Int. J. Mod. Phys. A 20, 3362 (2005) hep-ph/0412113.ADSzbMATHGoogle Scholar
  121. 121.
    R.S. Chivukula, H.J. He, M. Kurachi, E.H. Simmons, M. Tanabashi, Phys. Rev. D 78, 095003 (2008) arXiv:0808.1682 and references therein.ADSGoogle Scholar
  122. 122.
    G. Calcagni, private communications.Google Scholar
  123. 123.
    H.-J. He, Z.-Z. Xianyu, Phys. Lett. B 720, 142 (2013) arXiv:1301.4570 [hep-ph].MathSciNetADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Modern Physics and Center for High Energy PhysicsTsinghua UniversityBeijingChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina
  3. 3.Kavli Institute for Theoretical Physics ChinaCASBeijingChina

Personalised recommendations