Advertisement

On CCC-predicted concentric low-variance circles in the CMB sky

  • V. G. Gurzadyan
  • R. Penrose
Regular Article

Abstract

A new analysis of the CMB, using WMAP data, supports earlier indications of non-Gaussian features of concentric circles of low temperature variance. Conformal cyclic cosmology (CCC) predicts such features from supermassive black-hole encounters in an aeon preceding our Big Bang. The significance of individual low-variance circles in the true data has been disputed; yet a recent independent analysis has confirmed CCC's expectation that CMB circles have a non-Gaussian temperature distribution. Here we examine concentric sets of low-variance circular rings in the WMAP data, finding a highly non-isotropic distribution. A new “sky-twist” procedure, directly analysing WMAP data, without appeal to simulations, shows that the prevalence of these concentric sets depends on the rings being circular, rather than even slightly elliptical, numbers dropping off dramatically with increasing ellipticity. This is consistent with CCC's expectations; so also is the crucial fact that whereas some of the rings' radii are found to reach around 15° , none exceed 20° . The non-isotropic distribution of the concentric sets may be linked to previously known anomalous and non-Gaussian CMB features.

Keywords

Dark Matter Circular Ring WMAP Data Past Light Cone Angular Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Bodley Head, London, 2010) ISBN 978-0-224-08036-1Google Scholar
  2. 2.
    V.G. Gurzadyan, R. Penrose, arXiv:1011.3706
  3. 3.
    V.G. Gurzadyan, R. Penrose, arXiv:1104.5675
  4. 4.
    B. Gold, N. Odegard, J.L. Weiland, R.S. Hill, A. Kogut, C.L. Bennett, G. Hinshaw, X. Chen, J. Dunkley, M. Halpern, N. Jarosik, E. Komatsu, D. Larson, M. Limon, S.S. Meyer, M.R. Nolta, L. Page, K.M. Smith, D.N. Spergel, G.S. Tucker, E. Wollack, E.L. Wright, Astrophys. J. Suppl. 192, 16 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    V.G. Gurzadyan, R. Penrose, arXiv:1012.1486
  6. 6.
    R. Penrose, Before the big bang: an outrageous new perspective and its implications for particle physics, in EPAC 2006, Proceedings, Edinburgh, Scotland, edited by C.R. Prior (European Physical Society Accelerator Group, EPS-AG) pp. 2759, http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/THESPA01.PDF
  7. 7.
    K.A. Meissner, P. Nurowski, B. Ruszczycki, arXiv:1207.2498
  8. 8.
    A. Moss, D. Scott, J.P. Zibin, J. Cosmol. Astropart. Phys. 04, 033 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    I.K. Wehus, H.K. Eriksen, Astrophys. J. 733, L29 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Hajian, Astrophys. J. 740, 52 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    G.D. Starkman, C.J. Copi, D. Huterer, D. Schwarz, arXiv:1201.2459
  12. 12.
    K.P. Tod, Gen. Relativ. Gravit. 44, 2933 (2012)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    W. Nelson, E. Wilson-Ewing, Phys. Rev. D 84, 043508 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Gasperini, G. Veneziano, Phys. Rep. 373, 1 (2003)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004) Vintage IBN: 9780-679-77631-4Google Scholar
  16. 16.
    K.P. Tod, Class. Quantum Grav. 20, 521 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    S.W. Hawking, Phys. Rev. D 14, 2460 (1976)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    S.W. Hawking, Phys. Rev. D 72, 084013 (2005)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    I.H. Redmount, M.J. Rees, Comm. Astrophys. 14, 165 (1989)ADSGoogle Scholar
  20. 20.
    D. Merritt, M. Milosavljevic, M. Favata, S.A. Hughes, D.E. Holz, Astrophys. J. 607, L9 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    R. Penrose, W. Rindler, Spinors and Space-Time, Vols. 1 and 2 (Cambridge University Press, Cambridge, U.K., 1984, 1986)Google Scholar
  22. 22.
    H. Friedrich, Einstein's equation and conformal structure, in The Geometric UniverseGoogle Scholar
  23. 23.
    R. Penrose, Gen. Relativ. Gravit. 43, 3355 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    V.G. Gurzadyan, C.L. Bianco, A.L. Kashin, H. Kuloghlian, G. Yegorian, Phys. Lett. A 363, 121 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    V.G. Gurzadyan, A.A. Kocharyan, Astron. Astrophys. 493, L61 (2009)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    V.G. Gurzadyan, A.A. Kocharyan, EPL 86, 29002 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S. Capozziello, M. Funaro, C. Stornaiolo, Astron. Astrophys. 420, 847 (2004)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    R.G. Clowes, K.A. Harris, S. Raghunathan, L.E. Campusano, I.K. Soechting, M.J. Graham, Mon. Not. R. Astron. Soc. 429, 2910 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    H. Yamabe, Osaka Math. J. 12, 2137 (1960)Google Scholar
  30. 30.
    E.T. Newman, R. Penrose, Proc. R. Soc. London A 305, 175 (1968)ADSCrossRefGoogle Scholar
  31. 31.
    C.G. Callan, S. Coleman, R. Jackiw, Ann. Phys. 59, 42 (1970)MathSciNetCrossRefADSzbMATHGoogle Scholar
  32. 32.
    C.R. LeBrun, Class. Quantum Grav. 2, 555 (1985)MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. 33.
    M.G. Eastwood, J.W. Rice, Commun. Math. Phys. 109, 207 (1987) 144MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. G. Gurzadyan
    • 1
  • R. Penrose
    • 2
  1. 1.Alikhanian National Laboratory and Yerevan State UniversityYerevanArmenia
  2. 2.Mathematical InstituteOxfordUK

Personalised recommendations