Advertisement

Novel analysis of spinor interactions and non-Riemannian geometry

  • Orchieda Maria Lecian
  • Giovanni Montani
  • Nakia Carlevaro
Review

Abstract

A novel analysis of the gauge theory of the local Lorentz group is implemented both in flat and in curved space-time, and the resulting dynamics is analyzed in view of the geometrical interpretation of the gauge potential. The Yang-Mills picture of local Lorentz transformations is first approached in a second-order formalism. For the Lagrangian approach to reproduce the second Cartan structure equation as soon as the Lorentz gauge connections are identified with the contortion tensor, an interaction term between the Lorentz gauge fields and the spin connections has to be postulated. The full picture involving gravity, torsion and spinors is described by a coupled set of field equations, which allows one to interpret both gravitational spin connections and matter spin density as the source term for the Yang-Mills equations. The contortion tensor acquires a propagating character, because of its non-Abelian feature, and the pure contact interaction is restored in the limit of vanishing Lorentz connections.

Keywords

Gauge Theory Lorentz Group Spin Connection Local Rotation Teleparallel Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Utiyama, Phys. Rev. 101, 1597 (1956)MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    T.W.B. Kibble, J. Math. Phys. 2, 212 (1961)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Blagojevic, Gravitation and Gauge Symmetries (IoP Publishing, 2002)Google Scholar
  4. 4.
    F.W. Hehl, P. von der Heyde, G.D. Kerlick, J. Nester, Rev. Mod. Phys. 48, 393 (1976)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    F.W. Hehl, Gen. Relativ. Gravit. J. 4, 333 (1973)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    F.W. Hehl, Gen. Relativ. Gravit. J. 5, 491 (1974)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    F.W. Hehl, P. von der Heyde, G.D. Kerlick, Phys. Rev. D 10, 1066 (1974)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    P. Von der Heyde, Phys. Lett. A 58, 141 (1976)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M. Blagojevic, SFIN A 1, 147 (2003) gr-qc/0302040Google Scholar
  10. 10.
    S. Deser, C.J. Isham, Phys. Rev. D 14, 2505 (1976)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    J. Nitsch, in Proceedings of the 6th Course of the School of Cosmology and Gravitation on Spin, Torsion and Supergravity, Erice (Italy) 1979, edited by P.G. Bergmann, V. de Sabbata (Plenum Press, New York, 1980) p. 63Google Scholar
  12. 12.
    F.W. Hehl, in Proceedings of the 6th Course of the School of Cosmology and Gravitation on Spin, Torsion and Supergravity, Erice (Italy) 1979, edited by P.G. Bergmann, V. de Sabbata (Plenum Press, New York, 1980) p. 5Google Scholar
  13. 13.
    R. Wald, General Relativity (The University of Chicago Press, 1984)Google Scholar
  14. 14.
    A. Barducci, R. Casalbuoni, L. Lusanna, Nucl. Phys. B 124, 521 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    A. Cant, Y. Ne'eman, J. Math. Phys. 26, 3180 (1985)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Ne'eman, D. Sijacki, Found. Phys. 27, 1105 (1997) gr-qc/9804037MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    O.M. Lecian, S. Mercuri, in Proceedings of the 9th Marcel Grossmann Meeting, Berlin 2006 (World Scientific, 2008) p. 2668Google Scholar
  18. 18.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne'eman, Phys. Rep. 258, 1 (1995)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Y.N. Obukhov, J.G. Pereira, Phys. Rev. D 76, 044016 (2003)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    F. Gronwald, F.W. Hehl, On the Gauge Aspects of Gravity, in Proceedings of the 14th Course of the School of Cosmology and Gravitation, Erice (Italy) 1995 (World Scientific, Singapore, 1996)Google Scholar
  21. 21.
    F.W. Hehl, A. Macias, Int. J. Mod. Phys. D 8, 399 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    N. Carlevaro, O.M. Lecian, G. Montani, Ann. Fond. L. de Broglie 32, 281 (2007)MathSciNetGoogle Scholar
  23. 23.
    N. Carlevaro, O.M. Lecian, G. Montani, Int. J. Mod. Phys. A 23, 1282 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    G. Aprea, G. Montani, R. Ruffini, Int. J. Mod. Phys. D 12, 1875 (2003)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    R. de Azeredo Campos, P.S. Letelier, Prog. Theor. Phys. 75, 1359 (1986)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    H.J. Xie, T. Shirafuji, Prog. Theor. Phys. 97, 129 (1997)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    K. Hayashi, T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980)MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    A. Tiemblo, R. Tresguerres, Eur. Phys. J. C 42, 437 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    C. Wiesendanger, in Proceedings on ``Quantum Gravity'', Erice (Italy) 1995 (World Scientific, Singapore, 1996) gr-qc/9604043Google Scholar
  31. 31.
    C. Wiesendanger, Class. Quantum Grav. 13, 681 (1996)MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. 32.
    K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. 33.
    F.W. Hehl, J. Nitsch, P. von der Heyde, in General Relativity and Gravitation - One Hundred Years after the Birth of A. Einstein, edited by A. Held, Vol. 1 (Plenum, 1980) p. 329Google Scholar
  34. 34.
    J. Nitsch, in Cosmology and Gravitation - Spin, Torsion, Rotation and Supergravity, edited by P.G. Bergmann, V. de Sabbata (Plenum, 1980) p. 63Google Scholar
  35. 35.
    M. Blagojević, M. Vasilić, Class. Quantum Grav. 17, 3785 (2000)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    W. Kopczyński, J. Phys. A 15, 493 (1982)MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. 37.
    W.-H. Cheng, D.-C. Chern, J.M. Nester, Phys. Rev. D 38, 2656 (1988)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    H. Chen, J.M. Nester, H.J. Yo, Acta Phys. Pol. B 29, 961 (1998)MathSciNetADSzbMATHGoogle Scholar
  39. 39.
    M. Leclerc, Phys. Rev. D 71, 027503 (2005)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    M. Leclerc, Phys. Rev. D 72, 044002 (2005)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    F. Mandl, F. Shaw, Quantum Field Theory (J. Wiley and Sons, 1984)Google Scholar
  42. 42.
    S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995)Google Scholar
  43. 43.
    I.L. Shapiro, Phys. Rep. 357, 113 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. 44.
    T. Obata, Prog. Theor. Phys. 70, 622 (1983)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    F. Bigazzi, L. Lusanna, Int. J. Mod. Phys. A 14, 1877 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  46. 46.
    A. Ashtekar, J.D. Romano, R.S. Tate, Phys. Rev. D 40, 2572 (1989)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    S. Casanova, O.M. Lecian, G. Montani, R. Ruffini, R. Zalaletdinov, Mod. Phys. Lett. A 23, 17 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
  48. 48.
    K. Hajashi, T. Shirafui, Prog. Theor. Phys. 64, 883 (1980)ADSCrossRefGoogle Scholar
  49. 49.
    K. Hajashi, T. Shirafui, Prog. Theor. Phys. 64, 1435 (1980)ADSCrossRefGoogle Scholar
  50. 50.
    R.T. Hammond, Rep. Prog. Phys. 65, 599 (2002)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    S.M. Carroll, G.B. Field, Phys. Rev. D 50, 3867 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Orchieda Maria Lecian
    • 1
  • Giovanni Montani
    • 2
    • 1
  • Nakia Carlevaro
    • 1
  1. 1.Dipartimento di FisicaUniversità “La Sapienza”RomeItaly
  2. 2.ENEAUTFUS-MAGC.R. Frascati (Rome)Italy

Personalised recommendations