Advertisement

Approximate solutions of the Klein-Gordon equation for an Eckart and modified Hylleraas potential by SUSYQM

  • H. Hassanabadi
  • E. MaghsoodiEmail author
  • S. Zarrinkamar
  • H. Rahimov
Regular Article

Abstract

Arbitrary-state solutions of the Klein-Gordon equation are reported for the Eckart plus modified Hylleraas potential. An approximation is applied to the centrifugal term and solutions are obtained via the shape invariance condition. The problem is considered in arbitrary dimensions and the solutions are discussed vs. various parameters engaged. The corresponding oscillator strength is calculated as well.

Keywords

Oscillator Strength Hypergeometric Function Atomic Physic Shape Invariance Centrifugal Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y.P. Varshni, Rev. Mod. Phys. 29, 664 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    E.A. Hylleraas, J. Chem. Phys. 3, 595 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Ikot, O.A. Awoga, A.D. Antia, arXiv:1203.6779
  4. 4.
    F. Taskin, G. Kocak, Chin. Phys. B 19, 090314 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Y.F. Diao, L.Z. Yi, T. Chen, C.S. Jia, Mod. Phys. Lett. B 23, 2269 (2009)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    G.F. Wei, C.Y. Long, X.Y. Duan, S.H. Dong, Phys. Scr. 77, 035001 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    C.Y. Chen, D.S. Sun, F.L. Lu, J. Phys. A: Math. Theor. 41, 035302 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra, J. Phys. A: Math. Theor. 40, 10535 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Znojil, J. Phys. A: Math. Gen. 33, 4561 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    A.O. Barut, A. Inomata, R. Wilson, J. Phys. A: Math. Gen. 20, 4083 (1987)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, J. Math. Phys. 53, 022104 (2012)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Adv. High Ener. Phys. 2012, 707041 (2012) DOI:10.1155/2012/707041 MathSciNetGoogle Scholar
  13. 13.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Eur. Phys. J. Plus 127, 31 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Hassanabadi, E. Maghsoodi, R. Oudi, S. Zarrinkamar, H. Rahimov, Eur. Phys. J. Plus 127, 120 (2012)CrossRefGoogle Scholar
  15. 15.
    X.Y. Liu, G.F. Wei, C.Y. Long, Int. J. Theor. Phys. 48, 463 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Zhang, Phys. Scr. 78, 015006 (2008)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    E. Olgar, R. Koc, H. Tutunculer, Chin. Phys. Lett. 23, 539 (2006)CrossRefGoogle Scholar
  18. 18.
    S.H. Dong, Wave Equations in Higher Dimensions (Springer, 2011)Google Scholar
  19. 19.
    W.C. Qiang, S.H. Dong, Phys. Lett. A 368, 13 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    W.C. Qiang, S.H. Dong, Phys. Lett. A 372, 4789 (2008)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    G.F. Wei, C.Y. Long, S.H. Dong, Phys. Lett. A 372, 2592 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    S.H. Dong, W.C. Qiang, J. Garcia-Ravelo, Int. J. Mod. Phys. A 23, 1537 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    G.F. Wei, S.H. Dong, V.B. Bezerra, Int. J. Mod. Phys. A 24, 161 (2009)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer Verlag, 1996)Google Scholar
  25. 25.
    S.H. Dong, Factorization Method in Quantum Mechanics (Springer, 2007)Google Scholar
  26. 26.
    G.F. Wei, S.H. Dong, Can. J. Phys. 89, 1225 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    W.C. Qiang, S.H. Dong, Phys. Scr. 72, 127 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    G. Mao, Phys. Rev. C 67, 044318 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    H. Panahi, L. Jahangiry, Int. J. Theor. Phys. 48, 3234 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    C.S. Jia et al., Few-Body Syst. 52, 11 (2012) DOI:10.1007/s00601-011-0258-1 ADSCrossRefGoogle Scholar
  31. 31.
    L.E. Gendenstein, JETP Lett. 38, 356 (1983)ADSGoogle Scholar
  32. 32.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Mod. Phys. Lett. A 26, 2703 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. 33.
    P.E. Grabowski, D.F. Chernoff, Phys. Rev. A 84, 042505 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    T. Chakraborty, P. Pietilainen, Phys. Rev. Lett. 95, 136603 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    A. Mizel, I. Shtrichman, D. Gershoni, Phys. Rev. B 65, 235313 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    C. Mejri, M. Chaouache, M. Maaref, P. Voisin, J.M. Gerard, Semicond. Sci. Technol. 21, 1018 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. Hassanabadi
    • 1
  • E. Maghsoodi
    • 1
    Email author
  • S. Zarrinkamar
    • 2
  • H. Rahimov
    • 3
  1. 1.Physics DepartmentShahrood University of TechnologyShahroodIran
  2. 2.Department of Basic Sciences, Garmsar BranchIslamic Azad universityGarmsarIran
  3. 3.Computer Engineering DepartmentShahrood University of TechnologyShahroodIran

Personalised recommendations