Variational Bayesian localization of EEG sources with generalized Gaussian priors

  • J. M. Cortes
  • A. Lopez
  • R. Molina
  • A. K. Katsaggelos
Regular Article
Part of the following topical collections:
  1. Focus Point on Advanced Physical Methods in Brain Research


Although in the last decades the use of Magnetic Resonance Imaging has grown in popularity as a tool for the structural analysis of the brain, including MRI, fMRI and recently DTI, the ElectroEncephaloGraphy (EEG) is, still today, an interesting technique for the understanding of brain organization and function. The main reason for this is that the EEG is a direct measure of brain bioelectrical activity, and such activity can be monitorized in the millisecond time window. For some situations and cognitive scenarios, such fine temporal resolution might suffice for some aspects of brain function; however, the EEG spatial resolution is very poor since it is based on a small number of scalp recordings, thus turning the source localization problem into an ill-posed one in which infinite possibilities exist for the localization of the neuronal generators. This is an old problem in computational neuroimaging; indeed, many methods have been proposed to overcome this localization. Here, by performing a Variational Bayesian Inference procedure with a generalized Gaussian prior, we come out with an algorithm that performs simultaneously the estimation of both sources and model parameters. The novelty for the inclusion of the generalized Gaussian prior allows to control the smoothness degree of the estimated sources. Finally, the suggested algorithm is validated on simulated data.


Mean Square Error Posterior Distribution Scalp Recording Gaussian Prior Brain Bioelectrical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Nunez, Electric Fields of the Brain: The Neurophysics of EEG (Oxford University Press, 1981)Google Scholar
  2. 2.
    M. Hamalainen, R. Hari, R. Ilmoniemi, J. Knuutila, O. Lounasmaa, Rev. Mod. Phys. 65, 413 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    S. Baillet, J. Mosher, R. Leahy, IEEE Signal Process. Mag. 18, 14 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    R. Pascual-Marqui, C. Michel, D. Lehmann, Int. J. Psychophysiol. 18, 49 (1994)CrossRefGoogle Scholar
  5. 5.
    K. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, J. Ashburner, Neuroimage 16, 465 (2002)CrossRefGoogle Scholar
  6. 6.
    C. Phillips, M. Rugg, K. Friston, Neuroimage 17, 287 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Phillips, M. Rugg, K. Friston, Neuroimage 16, 678 (2002)CrossRefGoogle Scholar
  8. 8.
    N. Trujillo-Barreto, E. Aubert-Vazquez, P. Valdes-Sosa, Neuroimage 21, 1300 (2004)CrossRefGoogle Scholar
  9. 9.
    C. Phillips, J. Mattout, M. Rugg, P. Maquet, K. Friston, Neuroimage 24, 997 (2005)CrossRefGoogle Scholar
  10. 10.
    D. Wipf, R. Ramirez, J. Palmer, S. Makeig, B. Rao, Adv. Neural Inform. Process. Syst. 19 (2007)Google Scholar
  11. 11.
    K. Friston, L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips, N. Trujillo-Barreto, R. Henson, G. Flandin, J. Mattout, Neuroimage 39, 1104 (2008)CrossRefGoogle Scholar
  12. 12.
    N. Trujillo-Barreto, E. Aubert-Vazquez, W. Penny, Neuroimage 39, 318 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Bouman, K. Sauer, IEEE Trans. Image Process. 2, 296 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    M. Luessi, S. Babacan, R. Molina, J. Booth, A. Katsaggelos, Neuroimage 55, 113 (2011)CrossRefGoogle Scholar
  15. 15.
    C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)Google Scholar
  16. 16.
    S. Babacan, R. Molina, A. Katsaggelos, IEEE Trans. Image Process. 17, 326 (2008)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    D. Babacan, R. Molina, A. Katsaggelos, Generalized Gaussian Markov Random Field Image Restoration using Variational Distribution Approximation, in IEEE International Conference on Audio, Speech and Signal Processing (2008) pp. 1265--1268Google Scholar
  18. 18.
    J. Berger, Statistical Decision Theory and Bayesian Analysis (Springer-Verlag, Berlin, 1985)Google Scholar
  19. 19.
    S. Kullback, Information Theory and Statistics (Dover Publications, New York, 1959)Google Scholar
  20. 20.
    J. Mosher, R. Leah, IEEE Trans. Biomed. Eng. 45, 1342 (1998)CrossRefGoogle Scholar
  21. 21.
    R.G. de Peralta Menendez, S.G. Andino, G. Lantz, C. Michel, T. Landis, Brain Topogr. 14, 131 (2001)CrossRefGoogle Scholar
  22. 22.
    K. Friston, J. Ashburner, S. Kiebel, T. Nichols, W. Penny, Statistical Parametric Mapping: The Analysis of Functional Brain Images (Academic Press, 2006)Google Scholar
  23. 23.
    R. Oostenveld, P. Fries, E. Maris, J. Schoffelen, Comput. Intel. Neurosci. 2011, 156869 (2011)Google Scholar
  24. 24.
    J. Daunizeau, J. Mattout, D. Clonda, B. Goulard, H. Benali, J. Lina, IEEE Trans. Biomed. Eng. 53, 503 (2006)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. M. Cortes
    • 1
    • 2
  • A. Lopez
    • 3
  • R. Molina
    • 4
  • A. K. Katsaggelos
    • 5
  1. 1.IkerbasqueThe Basque Foundation for ScienceBilbaoSpain
  2. 2.Biocruces Health Research InstituteHospital Universitario de CrucesBarakaldoSpain
  3. 3.Departamento de Lenguajes y Sistemas InformáticosUniversidad de GranadaGranadaSpain
  4. 4.Departamento de Ciencias de la Computación e Inteligencia ArtificialUniversidad de GranadaGranadaSpain
  5. 5.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations