Advertisement

Testing General Relativity and gravitational physics using the LARES satellite

  • Ignazio Ciufolini
  • Antonio Paolozzi
  • Erricos Pavlis
  • John Ries
  • Vahe Gurzadyan
  • Rolf Koenig
  • Richard Matzner
  • Roger Penrose
  • Giampiero Sindoni
Regular Article

Abstract

The discovery of the accelerating expansion of the Universe, thought to be driven by a mysterious form of “dark energy” constituting most of the Universe, has further revived the interest in testing Einstein’s theory of General Relativity. At the very foundation of Einstein’s theory is the geodesic motion of a small, structureless test-particle. Depending on the physical context, a star, planet or satellite can behave very nearly like a test-particle, so geodesic motion is used to calculate the advance of the perihelion of a planet’s orbit, the dynamics of a binary pulsar system and of an Earth-orbiting satellite. Verifying geodesic motion is then a test of paramount importance to General Relativity and other theories of fundamental physics. On the basis of the first few months of observations of the recently launched satellite LARES, its orbit shows the best agreement of any satellite with the test-particle motion predicted by General Relativity. That is, after modelling its known non-gravitational perturbations, the LARES orbit shows the smallest deviations from geodesic motion of any artificial satellite: its residual mean acceleration away from geodesic motion is less than \(\ensuremath 0.5\times10^{-12}\) m/s^2. LARES-type satellites can thus be used for accurate measurements and for tests of gravitational and fundamental physics. Already with only a few months of observation, LARES provides smaller scatter in the determination of several low-degree geopotential coefficients (Earth gravitational deviations from sphericity) than available from observations of any other satellite or combination of satellites.

Keywords

Dark Energy Satellite Laser Range Proof Mass Geodesic Motion Atmospheric Drag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)Google Scholar
  2. 2.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, 1975)Google Scholar
  3. 3.
    I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, New Jersey, 1995)Google Scholar
  4. 4.
    C.M. Will, Theory and Experiment in Gravitational Physics, 2nd edition (Cambridge University Press, Cambridge, UK, 1993)Google Scholar
  5. 5.
    S.G. Turyshev, Usp. Fiz. Nauk 179, 3 (2009) Phys. Uspekhi 52CrossRefGoogle Scholar
  6. 6.
    A. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Perlmutter, Phys. Today 56, 53 (2003)CrossRefGoogle Scholar
  9. 9.
    R.R. Caldwell, Phys. World 17, 37 (2004)Google Scholar
  10. 10.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    S. Carroll et al., Phys. Rev. D 70, 083509 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Reinabelle Reyes et al., Nature Lett. 464, 256 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J.B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Addison Wesley, San Francisco, 2003)Google Scholar
  15. 15.
    W. Rindler, Relativity: Special, General, and Cosmological (Oxford University Press, Oxford, 2001)Google Scholar
  16. 16.
    J. Ehlers, Survey of General Relativity Theory, in Relativity, Astrophysics and Cosmology, edited by W. Israel (Reidel Publishing, 1973) pp. 1-125Google Scholar
  17. 17.
    J. Ehlers, R. Geroch, Ann. Phys. 309, 232 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Geroch, P.S. Jang, J. Math. Phys. 16, 65 (1975)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    I. Ciufolini, A. Paolozzi, E.C. Pavlis, J.C. Ries, R. Koenig, R. Matzner, The LARES Space Experiment: LARES Orbit, Error Analysis and Satellite Structure, in General Relativity and John Archibald Wheeler, edited by I. Ciufolini, R. Matzner (Springer, 2010) pp. 467-492Google Scholar
  20. 20.
    M.R. Pearlman, J.J. Degnan, J.M. Bosworth, Adv. Space Res. 30, 135 (2002) DOI:10.1016/S0273-1177(02)00277-6 ADSCrossRefGoogle Scholar
  21. 21.
    W.J. Bencze et al., Adv. Astron. Sci. 125, 425 (2006)Google Scholar
  22. 22.
    LAGEOS scientific results, J. Geophys. Res. B, Vol. 90 (1985) pp. 9215-9438Google Scholar
  23. 23.
    B.D. Tapley, The GRACE mission: status and performance assessment in Eos. Trans. AGU 83 Fall Meet. Suppl. Abstract G12B-01 (2002)Google Scholar
  24. 24.
    Ch. Reigber, F. Flechtner, R. Koenig, U. Meyer, K. Neumayer, GRACE orbit and gravity field recovery at GFZ Potsdam-first experiences and perspectives in Eos. Trans. AGU 83 Fall Meet. Suppl., Abstract G12B-03 (2002)Google Scholar
  25. 25.
    D.E. Pavlis, GEODYN operations manuals (Contractor Report, Raytheon, ITSS, Landover MD, 1998)Google Scholar
  26. 26.
    C.F. Martin, D.P. Rubincam, J. Geophys. Res. B 101, 3215 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    D.P. Rubincam, Celest. Mech. Dyn. Astron. 26, 361 (1982)CrossRefzbMATHGoogle Scholar
  28. 28.
    D.P. Rubincam, J. Geophys. Res. B 93, 13805 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    G. Métris, D. Vokroulicky, J.C. Ries, R.J. Eanes, J. Geophys. Res. 102, 2711 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    I. Ciufolini, Nature 449, 41 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    I. Ciufolini, E. Pavlis, Nature Lett. 431, 958 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    I. Ciufolini, E.C. Pavlis, J.C. Ries, R. Koenig, G. Sindoni, A. Paolozzi, H. Neumayer, “Test of Gravitomagnetism with the LAGEOS and GRACE Satellites”, in General Relativity and John Archibald Wheeler, edited by I. Ciufolini, R. Matzner (Springer, 2010) pp. 371-434Google Scholar
  33. 33.
    T.L. Smith, A.L. Erickcek, R.R. Caldwell, M. Kamionkowski, Phys. Rev. D 77, 024015 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ignazio Ciufolini
    • 1
  • Antonio Paolozzi
    • 2
  • Erricos Pavlis
    • 3
  • John Ries
    • 4
  • Vahe Gurzadyan
    • 5
  • Rolf Koenig
    • 6
  • Richard Matzner
    • 7
  • Roger Penrose
    • 8
  • Giampiero Sindoni
    • 2
  1. 1.Dipartimento di Ingegneria dell’InnovazioneUniversity of Salento, and INFNLecceItaly
  2. 2.Scuola di Ingegneria Aerospaziale and DIAEESapienza Università di RomaRomeItaly
  3. 3.Planetary Geodynamics LaboratoryNASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Center for Space ResearchThe University of Texas at AustinAustinUSA
  5. 5.Center for Cosmology and AstrophysicsAlikhanian National LaboratoryYerevanArmenia
  6. 6.Helmholtz Centre Potsdam GFZ German Research Centre for GeosciencesHelmholtzGermany
  7. 7.Center for RelativityThe University of Texas at AustinAustinUSA
  8. 8.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations