Advertisement

Gaussian diffusion sphere model to predict deposition velocity onto wafers in laminar parallel airflow considering thermophoresis

  • Sang-Hee Woo
  • Se-Jin YookEmail author
  • Seog Young Han
Regular Article

Abstract

The Gaussian Diffusion Sphere Model (GDSM) was developed and improved to predict the particle deposition velocity onto a flat plate exposed to parallel airflow by considering thermophoresis in addition to the Brownian diffusion and the gravitational settling of particles. The plate surface temperature was varied and considered to be either hotter or colder than the temperature of the parallel airflow. The GDSM was able to estimate the particle deposition velocity under the influence of thermophoresis not only correctly but also very quickly, compared to the numerical approach to calculate the deposition velocity by simulating thermo-flow and particle transport. As the next step, the particle deposition velocities onto both face-up and face-down surfaces of the 450 mm wafer exposed to the parallel airflow were predicted with the GDSM by varying the wafer temperature. It was anticipated that the schemes of heating the wafer and placing the critical surface inverted during the horizontal transport of the wafer could greatly reduce the particulate contamination of the wafer critical surface.

Keywords

Deposition Velocity Wafer Surface Gravitational Settling Concentration Boundary Layer Particulate Contamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.J. Yook, H. Fissan, C. Asbach, J.H. Kim, D.D. Dutcher, P.Y. Yan, D.Y.H. Pui, IEEE Trans. Semicond. Manuf. 20, 578 (2007).CrossRefGoogle Scholar
  2. 2.
    B.Y.H. Liu, K.H. Ahn, Aerosol Sci. Technol. 6, 215 (1987).CrossRefGoogle Scholar
  3. 3.
    Y. Otani, H. Emi, C. Kanaoka, K. Kato, J. Aerosol Sci. 20, 787 (1989).CrossRefGoogle Scholar
  4. 4.
    D.Y.H. Pui, Y. Ye, B.Y.H. Liu, Aerosol Sci. Technol. 12, 795 (1990).CrossRefGoogle Scholar
  5. 5.
    G.N. Bae, C.S. Lee, S.O. Park, Aerosol Sci. Technol. 21, 72 (1994).CrossRefGoogle Scholar
  6. 6.
    W.J. Choi, S.J. Yook, Aerosol Sci. Technol. 44, 919 (2010).CrossRefGoogle Scholar
  7. 7.
    S.J. Yook, C. Asbach, K.H. Ahn, J. Aerosol Sci. 41, 911 (2010).CrossRefGoogle Scholar
  8. 8.
    S.C. Lee, S.J. Yook, J. Electrochem. Soc. 158, H973 (2011).CrossRefGoogle Scholar
  9. 9.
    S.C. Lee, W.G. Kim, S.J. Yook, J. Appl. Phys. 110, 063518 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    T.W. Peterson, F. Stratmann, H. Fissan, J. Aerosol Sci. 20, 683 (1989).CrossRefGoogle Scholar
  11. 11.
    J.R. Turner, D.K. Liguras, H. Fissan, J. Aerosol Sci. 20, 403 (1989).CrossRefGoogle Scholar
  12. 12.
    Y. Ye, D.Y.H. Pui, B.Y.H. Liu, S. Opiolka, S. Blumhorst, H. Fissan, J. Aerosol Sci. 22, 63 (1991).CrossRefGoogle Scholar
  13. 13.
    S. Opiolka, F. Schmidt, H. Fissan, J. Aerosol Sci. 25, 665 (1994).CrossRefGoogle Scholar
  14. 14.
    G.N. Bae, C.S. Lee, S.O. Park, Aerosol Sci. Technol. 23, 321 (1995).CrossRefGoogle Scholar
  15. 15.
    R. Tsai, Y.P. Chang, T.Y. Lin, J. Aerosol Sci. 29, 811 (1998).CrossRefGoogle Scholar
  16. 16.
    K.H. Yoo, M.D. Oh, J. Aerosol Sci. 36, 235 (2005).CrossRefGoogle Scholar
  17. 17.
    T. Engelke, T. van der Zwaag, C. Asbach, H. Fissan, J.H. Kim, S.J. Yook, D.Y.H. Pui, J. Electrochem. Soc. 154, H170 (2007).CrossRefGoogle Scholar
  18. 18.
    S.J. Yook, H. Fissan, C. Asbach, J.H. Kim, T. van der Zwaag, T. Engelke, P.Y. Yan, D.Y.H. Pui, IEEE Trans. Semicond. Manuf. 20, 176 (2007).CrossRefGoogle Scholar
  19. 19.
    S.H. Woo, S.C. Lee, S.J. Yook, J. Aerosol Sci. 44, 1 (2012).CrossRefGoogle Scholar
  20. 20.
    W.K. Kim, S.C. Lee, S.J. Yook, J. Electrochem. Soc. 158, H1010 (2011).CrossRefGoogle Scholar
  21. 21.
    S.J. Yook, H. Fissan, C. Asbach, J.H. Kim, J. Wang, P.Y. Yan, D.Y.H. Pui, J. Aerosol Sci. 38, 211 (2007).CrossRefGoogle Scholar
  22. 22.
    S.J. Yook, H.J. Hwang, K.S. Lee, K.H. Ahn, J. Electrochem. Soc. 157, H692 (2010).CrossRefGoogle Scholar
  23. 23.
    S.J. Yook, K.H. Ahn, Appl. Phys. Lett. 94, 191909 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    W. Hinds, Aerosol Technology - Properties, Behavior, and Measurement of Airborne Particles, 2nd edition (Wiley, New York, 1999).Google Scholar
  25. 25.
    L. Talbot, R.K. Cheng, R.W. Schefer, D.R. Willis, J. Fluid Mech. 101, 737 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    G.K. Batchelor, C. Shen, J. Colloid Interface Sci. 107, 21 (1985).CrossRefGoogle Scholar
  27. 27.
    Y.A. Cengel, Heat Transfer — A Practical Approach, 2nd edition (McGraw-Hill, Singapore, 2003).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations