Two-point theory for the differential self-interrogation Feynman-alpha method

  • J. AndersonEmail author
  • D. Chernikova
  • I. Pázsit
  • L. Pál
  • S. A. Pozzi
Regular Article


A Feynman-alpha formula has been derived in a two region domain pertaining the stochastic differential self-interrogation (DDSI) method and the differential die-away method (DDAA). Monte Carlo simulations have been used to assess the applicability of the variance to mean through determination of the physical reaction intensities of the physical processes in the two domains. More specifically, the branching processes of the neutrons in the two regions are described by the Chapman-Kolmogorov equation, including all reaction intensities for the various processes, that is used to derive a variance to mean relation for the process. The applicability of the Feynman-alpha or variance to mean formulae are assessed in DDSI and DDAA of spent fuel configurations.


Fast Neutron Fuel Assembly Spend Fuel Energy Group Spend Fuel Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Kunz, J.T. Caldwell, J.D. Atencuo, Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors., US Patent 4,483,816, March (1982).Google Scholar
  2. 2.
    S. Croft, B. Mc Elroy, L. Bourva, M. Villani, Evaluation of the Minimum Detectable Quantities of Fissile Material in a Differential Die-Away Chamber, in Waste Management Conf. Proc. (Arizona, USA, 2003) paper 115.Google Scholar
  3. 3.
    K.A. Jordan, Detection of Special Nuclear Material in Hydrogenous Cargo Using Differential Die-Away Analysis, PhD Thesis, Dept. Nucl. Engineering, University of California, Berkeley (2006).Google Scholar
  4. 4.
    K.A. Jordan, T. Gozani, Nucl. Instrum. Methods B 261, 365 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    K.A. Jordan, T. Gozani, J. Vujic, Nucl. Instrum. Methods A 589, 436 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    H.O. Menlove, S.H. Menlove, S.T. Tobin, Nucl. Instrum. Methods A 602, 588 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    L. Pál, I. Pázsit, Eur. Phys. J. Plus 126, 20 (2011).CrossRefGoogle Scholar
  8. 8.
    I. Pázsit, L. Pál, A stochastic model of the differential die-away analysis (DDAA) method, in Proceedings 51st INMM 11 - 15 July, Baltimore, USA (2010).Google Scholar
  9. 9.
    R. Soule, W. Assal, P. Chaussonnet, C. Destouches, C. Domergue, C. Jammes, J.-M. Laurens, J.-F. Lebrat, F. Mellier, G. Perret, G. Rimpault, H. Serviére, G. Imel, G.M. Thomas, D. Villamarín, E.M. González-Romero, M. Plaschy, R. Chawla, J.L. Kloosterman, Y. Rugama, A. Billebaud, R. Brissot, D. Heuer, M. Kerveno, C. Le Brun, E. Liatard, J.-M. Loiseaux, O. Méplan, E. Merle, F. Perdu, J. Vollaire, P. Baeten, Nucl. Sci. Engin. 148, 124 (2004).Google Scholar
  10. 10.
    J.-L. Muñoz-Cobo, C. Berglöf, J. Peña, D. Villamarín, V. Bournos, Ann. Nucl. Energy 38, 590 (2011).CrossRefGoogle Scholar
  11. 11.
    C. Berglöf, M. Fernández-Ordóñez, D. Villamarín, V. Bécares, E.M. González-Romero, V. Bournos, J.-L. Muñoz-Cobo, Ann. Nucl. Energy 38, 194 (2011).CrossRefGoogle Scholar
  12. 12.
    R.Y.R. Kuramoto, A. dos Santos, R. Jerez, R. Diniz, Ann. Nucl. Energy 34, 433 (2007).CrossRefGoogle Scholar
  13. 13.
    J. Anderson, L. Pál, I. Pázsit, D. Chernikova, S. Pozzi, Eur. Phys. J. Plus 127, 21 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    R. Avery, Theory of Coupled Reactors, in Proc. 2nd Conf. Geneva P/1858, 181 (1958).Google Scholar
  15. 15.
    I. Pázsit, L. Pál, Neutron Fluctuations --- a Treatise on the Physics of Branching Processes (Elsevier Ltd, Oxford New York Tokyo, 2008).Google Scholar
  16. 16.
    I. Pázsit, Y. Yamane, Ann. Nucl. Energy 25, 667 (1998).CrossRefGoogle Scholar
  17. 17.
    T. Lundqvist Saleh, Tomographic techniques for safeguards measurements of nuclear fuel assemblies Uppsala University Neutron Physics Report, UU-NF 07#14 (2007) ISSN 1401-6269.Google Scholar
  18. 18.
    D.B. Pelowitz (Editor), MCNPX User’s Manual, Version 2.7.0, Los Alamos National Laboratory report LA-CP-11-00438, April 2011.Google Scholar
  19. 19.
    M.R. Williamson, Multivariate Optimization of Neutron Detectors Through Modeling, PhD diss., University of Tennessee, 2010 (
  20. 20.
    I. Broeders, C.H.M. Broeders, Neutron Physics Calculations for ADS Targets, Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte, FZKA Report 6507, Karlsruhe, 2000.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  • J. Anderson
    • 1
    Email author
  • D. Chernikova
    • 1
  • I. Pázsit
    • 1
    • 3
  • L. Pál
    • 2
  • S. A. Pozzi
    • 3
  1. 1.Department of Nuclear EngineeringChalmers University of TechnologyGöteborgSweden
  2. 2.Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations