Advertisement

Looking for magnetic monopoles at LHC with diphoton events

  • Luis N. EpeleEmail author
  • Huner Fanchiotti
  • Carlos A. García Canal
  • Vasiliki A. Mitsou
  • Vicente Vento
Regular Article

Abstract

Magnetic monopoles have been a subject of interest since Dirac established the relation between the existence of monopoles and charge quantization. The intense experimental search carried thus far has not met with success. The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to discover these rare particles we propose here other ways to detect them. We study the observability of monopoles and monopolium, a monopole-antimonopole bound state, at the Large Hadron Collider in the γγ channel for monopole masses in the range 500–1000 GeV. We conclude that LHC is an ideal machine to discover monopoles with masses below 1TeV at present running energies and with 5 fb−1 of integrated luminosity.

Keywords

Large Hadron Collider Atlas Collaboration Magnetic Monopole Monopole Mass Monopolium Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.A.M. Dirac, Proc. R. Soc. London A 133, 60 (1931).ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Jackson, Classical Electrodynamics (de Gruyter, N.Y., 1982).Google Scholar
  3. 3.
    N. Craigie, G. Giacomelli, W. Nahern, Q. Shafi, Theory and detection of magnetic monopoles in gauge theories (World Scientific, Singapore, 1986).Google Scholar
  4. 4.
    P.D.B. Martin Collins, A.D. Martin, E.J. Squires, Particle Physics and Cosmology (Wiley, N.Y., 1989).Google Scholar
  5. 5.
    D0 Collaboration (B. Abbott et al.), Phys. Rev. Lett. 81, 524 (1998) arXiv:hep-ex/9803023.ADSCrossRefGoogle Scholar
  6. 6.
    Particle Data Group (S. Eidelman et al.), Phys. Lett. B 592, 1 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Mulhearn, A Direct Search for Dirac Magnetic Monopoles, Ph.D. Thesis, Massachusetts Institue of Technology (2004) FERMILAB-THESIS-2004-51.Google Scholar
  8. 8.
    G. Giacomelli, L. Patrizii, arXiv:hep-ex/0506014.
  9. 9.
    CDF Collaboration (A. Abulencia et al.), Phys. Rev. Lett. 96, 201801 (2006) arXiv:hep-ex/0509015.ADSCrossRefGoogle Scholar
  10. 10.
    K.A. Milton, Rep. Prog. Phys. 69, 1637 (2006) arXiv:hep-ex/0602040.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Particle Data Group (W.M. Yao et al.), J. Phys. G 33, 1 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    CDF Collaboration (A. Abulencia et al.), Phys. Rev. Lett. 96, 011802 (2006) arXiv:hep-ex/0508051.ADSCrossRefGoogle Scholar
  13. 13.
    S. Balestra, G. Giacomelli, M. Giorgini, L. Patrizii, V. Popa, Z. Sahnoun, V. Togo, arXiv:1105.5587 [hep-ex].
  14. 14.
    P.A.M. Dirac, Phys. Rev. 74, 817 (1948).MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Y.B. Zeldovich, M.Y. Khlopov, Phys. Lett. B 79, 239 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    C.T. Hill, Nucl. Phys. B 224, 469 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    V.K. Dubrovich, Grav. Cosmol. Suppl. 8N1, 122 (2002).Google Scholar
  18. 18.
    L.N. Epele, H. Fanchiotti, C.A. García Canal, V. Vento, Eur. Phys. J. C 56, 87 (2008) arXiv:hep-ph/0701133.ADSCrossRefGoogle Scholar
  19. 19.
    L.N. Epele, H. Fanchiotti, C.A.G. Canal, V. Vento, Eur. Phys. J. C 62, 587 (2009) arXiv:0809.0272 [hep-ph].ADSCrossRefGoogle Scholar
  20. 20.
    I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, Nucl. Instrum. Methods 205, 47 (1983).CrossRefGoogle Scholar
  21. 21.
    I.F. Ginzburg, S.L. Panfil, Sov. J. Nucl. Phys. 36, 850 (1982) Yad. Fiz. 36.Google Scholar
  22. 22.
    Yu. Kurochkin, I. Satsunkevich, D. Shoukavy, N. Rusakovich, Yu. Kulchitsky, Mod. Phys. Lett. A 21, 2873 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    I.F. Ginzburg, A. Schiller, Phys. Rev. D 57, 6599 (1998) arXiv:hep-ph/9802310.ADSCrossRefGoogle Scholar
  24. 24.
    I.F. Ginzburg, A. Schiller, Phys. Rev. D 60, 075016 (1999) arXiv:hep-ph/9903314.ADSCrossRefGoogle Scholar
  25. 25.
    G.R. Kalbfleisch, K.A. Milton, M.G. Strauss, L.P. Gamberg, E.H. Smith, W. Luo, Phys. Rev. Lett. 85, 5292 (2000) arXiv:hep-ex/0005005.ADSCrossRefGoogle Scholar
  26. 26.
    T. Dougall, S.D. Wick, Eur. Phys. J. A 39, 213 (2009) arXiv:0706.1042 [hep-ph].ADSCrossRefGoogle Scholar
  27. 27.
    ATLAS Collaboration (G. Aad et al.), JINST 3, S08003 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    CMS Collaboration (R. Adolphi et al.), JINST 3, S08004 (2008).CrossRefGoogle Scholar
  29. 29.
    J.L. Pinfold, AIP Conf. Proc. 1304, 234 (2010) MOEDAL Collaboration (J.L. Pinfold), CERN Cour. 50N4.ADSCrossRefGoogle Scholar
  30. 30.
    L.N. Epele, H. Fanchiotti, C.A.G. Canal, V.A. Mitsou, V. Vento, arXiv:1104.0218 [hep-ph].
  31. 31.
    L.N. Epele, H. Fanchiotti, C.A. García-Canal, V.A. Mitsou, V. Vento, arXiv:1107.3684 [hep-ph].
  32. 32.
    J.S. Schwinger, Phys. Rev. 144, 1087 (1966).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    D. Zwanziger, Phys. Rev. D 3, 880 (1971).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    L.P. Gamberg, K.A. Milton, Phys. Rev. D 61, 075013 (2000) arXiv:hep-ph/9910526.ADSCrossRefGoogle Scholar
  35. 35.
    L.F. Urrutia, Phys. Rev. D 18, 3031 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Cornwall, Phys. Rev. D 26, 1453 (1982).ADSCrossRefGoogle Scholar
  37. 37.
    S. Weinberg, Physica A 96, 327 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    C. Itzykson, J.B. Zuber, Quantum Field Theory, in International Series in Pure and Applied Physics (McGraw-Hill, N.Y., 1980) pp. 705.Google Scholar
  39. 39.
    R. Karplus, M. Neuman, Phys. Rev. 80, 380 (1950).MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    R. Karplus, M. Neuman, Phys. Rev. 83, 776 (1951).ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    H. Euler, Ann. Phys. 26, 398 (1936).CrossRefzbMATHGoogle Scholar
  42. 42.
    A. Achieser, Physik Z. Sowjetunion 11, 263 (1937).zbMATHGoogle Scholar
  43. 43.
    P.L. Csonka, K.S. Koelbig, Phys. Rev. D 10, 251 (1974).ADSCrossRefGoogle Scholar
  44. 44.
    J.M. Jauch, F. Rorhlich, The theory of electrons and photons (Springer, 1975).Google Scholar
  45. 45.
    M.E. Peskin, D.V. Schroeder, An introduction to quantum field theory (HarperCollins, 1995).Google Scholar
  46. 46.
    B.C. Allanach, K. Odagiri, M.A. Parker, B.R. Webber, JHEP 09, 019 (2000) arXiv:hep-ph/0006114.ADSCrossRefGoogle Scholar
  47. 47.
    M.R. Pennington, Acta Phys. Pol. B 37, 857 (2006) arXiv:hep-ph/0511146.ADSGoogle Scholar
  48. 48.
    K.A. Milton, arXiv:0802.2569 [hep-ph].
  49. 49.
    M. Drees, R.M. Godbole, M. Nowakowski, S.D. Rindani, Phys. Rev. D 50, 2335 (1994) arXiv:hep-ph/9403368.ADSCrossRefGoogle Scholar
  50. 50.
    The Cteq6 parton distribution functions can be found at http://www.phys.psu.edu//cteq/.
  51. 51.
    E.J. Williams, Phys. Rev. 45, 729 (1934).ADSCrossRefGoogle Scholar
  52. 52.
    C.F. von Weizsacker, Z. Phys. 88, 612 (1934).ADSCrossRefGoogle Scholar
  53. 53.
    M. Drees, D. Zeppenfeld, Phys. Rev. D 39, 2536 (1989).ADSCrossRefGoogle Scholar
  54. 54.
    Atlas Collaboration (G. Aad et al.), Phys. Rev. Lett. 106, 121803 (2011) arXiv:1012.4272 [hep-ex].ADSCrossRefGoogle Scholar
  55. 55.
    ATLAS Collaboration (G. Aad), arXiv:1107.0581 [hep-ex].
  56. 56.
    ATLAS Collaboration, Search for the Higgs Boson in the Diphoton Channel with the ATLAS Detector using 209pb−1 of 7TeV Data taken in 2011, ATLAS Note, ATLASCONF- 2011-085 (2011).Google Scholar
  57. 57.
    ATLAS Collaboration, ATLAS Sensitivity Prospects for Higgs Boson Production at the LHC Running at 7TeV, ATLAS Note, ATL-PHYS-PUB-2010-009 (2010).Google Scholar
  58. 58.
    G.S. Adkins, R.N. Fell, J. Sapirstein, Phys. Rev. A 63, 032511 (2001).ADSCrossRefGoogle Scholar
  59. 59.
    D. Binosi, L. Theussl, Comput. Phys. Commun. 161, 76 (2004) arXiv:hep-ph/0309015.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  • Luis N. Epele
    • 1
    Email author
  • Huner Fanchiotti
    • 1
  • Carlos A. García Canal
    • 1
  • Vasiliki A. Mitsou
    • 2
  • Vicente Vento
    • 2
    • 3
  1. 1.Laboratorio de Física Teórica, Departamento de Física, IFLP, CONICET, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, C.C. 67La PlataArgentina
  2. 2.Instituto de Física CorpuscularUniversidad de Valencia and CSICValenciaSpain
  3. 3.Departamento de Física TeóricaUniversidad de ValenciaBurjassot (Valencia)Spain

Personalised recommendations