Advertisement

The use of pKZ1 mouse chromosomal inversion assay to study biological effects of environmental background radiation

  • D. Capece
  • E. Fratini
Regular Article

Abstract

Life has evolved on Earth for 3 billion years in the presence of background ionizing radiation (IR). All organisms on Earth are continuously exposed to varying amounts of natural radiation and they have therefore incorporated in their normal biology a daily stimulus of ultra-low-dose radiation. A question arises about the biological effects of environmental background radiation and whether the biochemical behavior of living organisms would differ if it was absent. Here, we report our experimental design to address these scientific questions, which use pKZ1 mouse chromosomal inversion assay to study the biological behavior of different cell cultures maintained in “cosmic silence” and in reference background conditions.

Keywords

Environmental Radiation Underground Laboratory Occupational Radiation Exposure Gran Sasso National Laboratory Alesse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ICRP, Recommendations of the International Commission on Radiological Protection, ICRP Publication 1 (Pergamon Press, Oxford, 1959).Google Scholar
  2. 2.
    ICRP, Recommendations of the International Commission on Radiological Protection, ICRP Publication 103 (Pergamon Press, Oxford, 2007).Google Scholar
  3. 3.
    U.S. Environmental Protection Agency, EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (EPA 402-R-11-001, 2011).Google Scholar
  4. 4.
    W.F. Morgan, Oncogene 22, 7094 (2003).CrossRefGoogle Scholar
  5. 5.
    M.A. Kadim et al., Mutat. Res. 568, 21 (2004).CrossRefGoogle Scholar
  6. 6.
    W.F. Morgan, M.B. Sowa, Proc. Natl. Acad. Sci. 102, 14127 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    C. Mothersill, C. Seymour, Mutat. Res. 568, 121 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Tubiana et al., Radiology 251, 13 (2009).CrossRefGoogle Scholar
  9. 9.
    B.R. Scott et al., Dose Response 7, 104 (2009).CrossRefGoogle Scholar
  10. 10.
    R.E. Mitchel et al., Dose Response 8, 92 (2009).Google Scholar
  11. 11.
    G. Olivieri et al., Science 223, 594 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    S. Wolff, Environ. Health Perspect. 106, 277 (1998).Google Scholar
  13. 13.
    E. Elmore et al., Radiat. Res. 169, 311 (2008).CrossRefGoogle Scholar
  14. 14.
    T.K. Day et al., Radiat. Res. 166, 757 (2006).CrossRefGoogle Scholar
  15. 15.
    T.K. Day et al., Dose Response 5, 315 (2007).CrossRefGoogle Scholar
  16. 16.
    K.N. Rithidech et al., Health Phys. 102, 39 (2012).CrossRefGoogle Scholar
  17. 17.
    P. Belli et al., Nuovo Cimento A 101, 959 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    A. Rindi et al., Nucl. Instrum. Methods 272, 871 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    L. Satta et al., Mutat. Res. 347, 129 (1995).CrossRefGoogle Scholar
  20. 20.
    L. Satta et al., Radiat. Environ. Biophys. 41, 217 (2002).Google Scholar
  21. 21.
    F. Antonelli et al., Nuovo Cimento 31, 49 (2008).Google Scholar
  22. 22.
    M.C. Carbone et al., Radiat. Environ. Biophys. 48, 189 (2009).CrossRefGoogle Scholar
  23. 23.
    G.B. Smith et al., Health Phys. 100, 263 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Matsuoka et al., Science 254, 81 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    G. Zeng et al., Mutat. Res. 602, 65 (2006).CrossRefGoogle Scholar
  26. 26.
    A.M. Hooker, Mut. Res. 500, 117 (2002).CrossRefGoogle Scholar
  27. 27.
    R.F. Jostes et al., Radiat. Res. 127, 211 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  1. 1.Historical Museum of Physics and Research Centre “Enrico Fermi”RomeItaly

Personalised recommendations