Relativistic symmetries of Dirac equation and the Tietz potential
Regular Article
First Online:
- 154 Downloads
- 51 Citations
Abstract
Relativistic symmetries of the Dirac equation, namely the spin and pseudospin symmetries, are investigated under the Tietz potential for the scalar and vector interactions beside a Coulomb tensor term. The analytical approach of supersymmetry quantum mechanics is applied to the problem and the problem is discussed in a quite detailed manner.
Keywords
Dirac Equation Degenerate State Relativistic Symmetry Symmetry Limit Pseudospin Symmetry
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.F. Cooper et al., Phys. Rep. 251, 267 (1995).MathSciNetADSCrossRefGoogle Scholar
- 2.G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer Verlag, Berlin, 1996).Google Scholar
- 3.B. Bagchi, Supersymmetry in quantum and classical mechanics (Chapman and Hall/CRC, 2000).Google Scholar
- 4.A. Lahiri, P.K. Roy, B. Bagchi, J. Phys. A: Math. Gen. 20, 5403 (1987).MathSciNetADSCrossRefGoogle Scholar
- 5.A. Lahiri, P.K. Roy, B. Bagchi, J. Phys. A: Math. Gen. 20, 3825 (1987).MathSciNetADSCrossRefGoogle Scholar
- 6.V.A. Kostelecky, M.M. Nieto, Phys. Rev. A 32, 1293 (1985).MathSciNetADSCrossRefGoogle Scholar
- 7.R.W. Haymaker, A.R.P. Rau, Am. J. Phys. 54, 928 (1986).ADSCrossRefGoogle Scholar
- 8.V.A. Kostelecky, M.M. Nieto, Phys. Rev. Lett. 53, 2285 (1984).ADSCrossRefGoogle Scholar
- 9.V.A. Kostelecky, M.M. Nieto, Phys. Rev. D 32, 2627 (1985).MathSciNetADSCrossRefGoogle Scholar
- 10.A. Okninski, Int. J. Theor. Phys. 50, 729 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
- 11.S. Zarrinkamar, A.A. Rajabi, H. Hassanabadi, Ann. Phys. 325, 2522 (2010).MathSciNetADSCrossRefzbMATHGoogle Scholar
- 12.M. Zonjil, Phys. Lett. A 259, 220 (1999).MathSciNetADSCrossRefGoogle Scholar
- 13.B. Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 38, 2929 (2005).MathSciNetADSCrossRefzbMATHGoogle Scholar
- 14.C. Quesne, Ann. Phys. 321, 1221 (2006).MathSciNetADSCrossRefzbMATHGoogle Scholar
- 15.A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002).ADSCrossRefGoogle Scholar
- 16.H. Hassanabadi, S. Zarrinkamar, H. Rahimov, Commun. Theor. Phys. 56, 423 (2011).ADSCrossRefzbMATHGoogle Scholar
- 17.J.N. Ginocchio, Phys. Rep. 414, 165 (2005).MathSciNetADSCrossRefGoogle Scholar
- 18.J.N. Ginocchio, A. Leviatan, Phys. Lett. B 425, 1 (1998).ADSCrossRefGoogle Scholar
- 19.T. Tietz, J. Chem. Phys. 35, 1917 (1961).ADSCrossRefGoogle Scholar
- 20.C. Berkdemir, Nucl. Phys. A 770, 32 (2006).ADSCrossRefGoogle Scholar
- 21.J.Y. Guo et al., Int. J. Mod. Phys. A 22, 4825 (2007).ADSCrossRefzbMATHGoogle Scholar
- 22.W.C. Qiang et al., J. Phys. A: Math. Theor. 40, 1677 (2007).MathSciNetADSCrossRefzbMATHGoogle Scholar
- 23.Q. Xu, S.J. Zhu, Nucl. Phys. A 768, 161 (2006).ADSCrossRefGoogle Scholar
- 24.H. Ackay, Phys. Lett. A 373, 616 (2009).MathSciNetADSCrossRefGoogle Scholar
- 25.H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Modern Phys. Lett. A 26, 2703 (2011).MathSciNetADSCrossRefzbMATHGoogle Scholar
- 26.H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, J. Math. Phys. 53, 022104 (2012).MathSciNetADSCrossRefGoogle Scholar
- 27.O. Aydoğdu, R. Sever, Phys. Lett. B 703, 379 (2011).MathSciNetADSCrossRefGoogle Scholar
- 28.W.C. Qiang, S.H. Dong, Phys. Lett. A. 368, 13 (2007).MathSciNetADSCrossRefzbMATHGoogle Scholar
- 29.C.S. Jia et al., Few-Body Syst. 52, 11 (2012).ADSCrossRefGoogle Scholar
- 30.L.E. Gendenshtein, Sov. Phys. JETP Lett. 38, 356 (1983).ADSGoogle Scholar
Copyright information
© Società Italiana di Fisica and Springer 2012