The Sudakov veto algorithm reloaded

Regular Article

Abstract

We perform a careful analysis of the main Monte Carlo algorithm used in parton shower simulations, the Sudakov veto algorithm. We prove a general version of the algorithm, directly including the dependence on the infrared cutoff. Taking this as a starting point, we then consider non-positive definite splitting kernels, as encountered when dealing with sub-leading colour correlations or splitting kernels beyond leading order. New algorithms suited for these situations are developed.

References

  1. 1.
    M. Bähr et al., Eur. Phys. J. C 58, 639 (2008) arXiv:0803.0883.ADSCrossRefGoogle Scholar
  2. 2.
    T. Sjöstrand, S. Mrenna, P. Skands, Comput. Phys. Commun. 178, 852 (2008) arXiv:0710.3820.ADSCrossRefMATHGoogle Scholar
  3. 3.
    T. Gleisberg et al., JHEP 02, 007 (2009) arXiv:0811.4622.ADSCrossRefGoogle Scholar
  4. 4.
    M.H. Seymour, Comput. Phys. Commun. 90, 95 (1995) arXiv:hep-ph/9410414.ADSCrossRefGoogle Scholar
  5. 5.
    M. Bengtsson, T. Sjostrand, Phys. Lett. B 185, 435 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    M. Bengtsson, T. Sjostrand, Nucl. Phys. B 289, 810 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    E. Norrbin, T. Sjöstrand, Nucl. Phys. B 603, 297 (2001) arXiv:hep-ph/0010012.ADSCrossRefGoogle Scholar
  8. 8.
    G. Miu, T. Sjostrand, Phys. Lett. B 449, 313 (1999) arXiv:hep-ph/9812455.ADSCrossRefGoogle Scholar
  9. 9.
    P. Nason, JHEP 11, 040 (2004) arXiv:hep-ph/0409146.ADSCrossRefGoogle Scholar
  10. 10.
    S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 11, 063 (2001) arXiv:hep-ph/0109231.ADSCrossRefGoogle Scholar
  11. 11.
    L. Lönnblad, JHEP 05, 046 (2002) arXiv:hep-ph/0112284.CrossRefGoogle Scholar
  12. 12.
    W.T. Giele, D.A. Kosower, P.Z. Skands, Phys. Rev. D 78, 014026 (2008) arXiv:0707.3652.ADSCrossRefGoogle Scholar
  13. 13.
    S. Hoeche, F. Krauss, S. Schumann, F. Siegert, JHEP 05, 053 (2009) arXiv:0903.1219.ADSCrossRefGoogle Scholar
  14. 14.
    K. Hamilton, P. Richardson, J. Tully, JHEP 11, 038 (2009) arXiv:0905.3072.ADSCrossRefGoogle Scholar
  15. 15.
    S. Gieseke, JHEP 01, 058 (2005) arXiv:hep-ph/0412342.ADSCrossRefGoogle Scholar
  16. 16.
    T. Sjöstrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006) arXiv:hep-ph/0603175.ADSCrossRefGoogle Scholar
  17. 17.
    A. Buckley et al., Phys. Rep. 504, 145 (2011) arXiv:1101.2599.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  1. 1.DESYHamburgGermany
  2. 2.Institut für Theoretische PhysikKITKarlsruheGermany

Personalised recommendations