Advertisement

The Sudakov veto algorithm reloaded

  • S. Plätzer
  • M. Sjödahl
Regular Article

Abstract

We perform a careful analysis of the main Monte Carlo algorithm used in parton shower simulations, the Sudakov veto algorithm. We prove a general version of the algorithm, directly including the dependence on the infrared cutoff. Taking this as a starting point, we then consider non-positive definite splitting kernels, as encountered when dealing with sub-leading colour correlations or splitting kernels beyond leading order. New algorithms suited for these situations are developed.

Keywords

Parton Shower Sudakov Form Factor Sudakov Factor Splitting Kernel Tree Level Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Bähr et al., Eur. Phys. J. C 58, 639 (2008) arXiv:0803.0883.ADSCrossRefGoogle Scholar
  2. 2.
    T. Sjöstrand, S. Mrenna, P. Skands, Comput. Phys. Commun. 178, 852 (2008) arXiv:0710.3820.ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    T. Gleisberg et al., JHEP 02, 007 (2009) arXiv:0811.4622.ADSCrossRefGoogle Scholar
  4. 4.
    M.H. Seymour, Comput. Phys. Commun. 90, 95 (1995) arXiv:hep-ph/9410414.ADSCrossRefGoogle Scholar
  5. 5.
    M. Bengtsson, T. Sjostrand, Phys. Lett. B 185, 435 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    M. Bengtsson, T. Sjostrand, Nucl. Phys. B 289, 810 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    E. Norrbin, T. Sjöstrand, Nucl. Phys. B 603, 297 (2001) arXiv:hep-ph/0010012.ADSCrossRefGoogle Scholar
  8. 8.
    G. Miu, T. Sjostrand, Phys. Lett. B 449, 313 (1999) arXiv:hep-ph/9812455.ADSCrossRefGoogle Scholar
  9. 9.
    P. Nason, JHEP 11, 040 (2004) arXiv:hep-ph/0409146.ADSCrossRefGoogle Scholar
  10. 10.
    S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 11, 063 (2001) arXiv:hep-ph/0109231.ADSCrossRefGoogle Scholar
  11. 11.
    L. Lönnblad, JHEP 05, 046 (2002) arXiv:hep-ph/0112284.CrossRefGoogle Scholar
  12. 12.
    W.T. Giele, D.A. Kosower, P.Z. Skands, Phys. Rev. D 78, 014026 (2008) arXiv:0707.3652.ADSCrossRefGoogle Scholar
  13. 13.
    S. Hoeche, F. Krauss, S. Schumann, F. Siegert, JHEP 05, 053 (2009) arXiv:0903.1219.ADSCrossRefGoogle Scholar
  14. 14.
    K. Hamilton, P. Richardson, J. Tully, JHEP 11, 038 (2009) arXiv:0905.3072.ADSCrossRefGoogle Scholar
  15. 15.
    S. Gieseke, JHEP 01, 058 (2005) arXiv:hep-ph/0412342.ADSCrossRefGoogle Scholar
  16. 16.
    T. Sjöstrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006) arXiv:hep-ph/0603175.ADSCrossRefGoogle Scholar
  17. 17.
    A. Buckley et al., Phys. Rep. 504, 145 (2011) arXiv:1101.2599.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer 2012

Authors and Affiliations

  1. 1.DESYHamburgGermany
  2. 2.Institut für Theoretische PhysikKITKarlsruheGermany

Personalised recommendations