Advertisement

Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications

  • M. FriákEmail author
  • T. Hickel
  • B. Grabowski
  • L. Lymperakis
  • A. Udyansky
  • A. Dick
  • D. Ma
  • F. Roters
  • L. -F. Zhu
  • A. Schlieter
  • U. Kühn
  • Z. Ebrahimi
  • R. A. Lebensohn
  • D. Holec
  • J. Eckert
  • H. Emmerich
  • D. Raabe
  • J. Neugebauer
Review
Part of the following topical collections:
  1. Focus Point on Open Issues of Interface Computation at Complementary Time and Length Scales

Abstract

Multi-methodological approaches combining quantum-mechanical and/or atomistic simulations with continuum methods have become increasingly important when addressing multi-scale phenomena in computational materials science. A crucial aspect when applying these strategies is to carefully check, and if possible to control, a variety of intrinsic errors and their propagation through a particular multi-methodological scheme. The first part of our paper critically reviews a few selected sources of errors frequently occurring in quantum-mechanical approaches to materials science and their multi-scale propagation when describing properties of multi-component and multi-phase polycrystalline metallic alloys. Our analysis is illustrated in particular on the determination of i) thermodynamic materials properties at finite temperatures and ii) integral elastic responses. The second part addresses methodological challenges emerging at interfaces between electronic structure and/or atomistic modeling on the one side and selected continuum methods, such as crystal elasticity and crystal plasticity finite element method (CEFEM and CPFEM), new fast Fourier transforms (FFT) approach, and phase-field modeling, on the other side.

Keywords

Fast Fourier Transform Elastic Constant Bulk Modulus Acta Mater Grain Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965).MathSciNetADSGoogle Scholar
  3. 3.
    J.P. Perdew, S. Kurth, Lect. Notes Phys., Vol. 620 (Springer, Berlin Heidelberg, 2003) p. 1Google Scholar
  4. 4.
    K. Capelle, Braz. J. Phys. 36, 1318 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    S. Baroni, S. de Gironcoli, P.G.A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).Google Scholar
  7. 7.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).Google Scholar
  8. 8.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2000).Google Scholar
  9. 9.
    G. Grimvall, Sci. Model. Simul. 15, 5 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Grimvall, Sci. Model. Simul. 15, 21 (2008).CrossRefGoogle Scholar
  11. 11.
    G. Grimvall, Sci. Model. Simul. 15, 41 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Friák, W. Counts, D. Raabe, J. Neugebauer, Phys. Status. Solidi. b 245, 2636 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    N.D. Mermin, Phys. Rev. A 137, 1441 (1965).MathSciNetADSGoogle Scholar
  14. 14.
    R. Kikuchi, Phys. Rev. 81, 988 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    R. Kikuchi, Calphad 26, 33 (2002).CrossRefGoogle Scholar
  16. 16.
    J.M. Sanchez, F. Ducastelle, D. Gratias, Physica A 128, 334 (1984).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. van de Walle, M. Asta, Acta Mater. 56, 3202 (2008).CrossRefGoogle Scholar
  18. 18.
    A. van de Walle, G. Ceder, Rev. Mod. Phys. 74, 11 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    A. Zunger, V. Blum, Phys. Rev. B 70, 155108 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    A. Ruban, I. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    A. van de Walle, M. Asta, Model. Simul. Mater. Sci. Eng. 10, 521 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    Y.S. Touloukian, E.H. Buyco, Specific heat - metallic elements and alloys, in Thermophysical Properties of Matter, Vol. 4 (IFI, Plenum, New York, 1970).Google Scholar
  23. 23.
    H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937).Google Scholar
  24. 24.
    R. Feynman, Phys. Rev. 56, 340 (1939).ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    J. Harris, R.O. Jones, J.E. Müller, J. Chem. Phys. 75, 3904 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    B. Grabowski, T. Hickel, J. Neugebauer, Phys. Rev. B 76, 024309 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams (Academic, New York, 1970).Google Scholar
  29. 29.
    B. Grabowski, L. Ismer, T. Hickel, J. Neugebauer, Phys. Rev. B 79, 134106 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    B. Hallstedt et al., Calphad 34, 129 (2010).CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    J. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    J.Z. Liu, A. van de Walle, G. Ghosh, M. Asta, Phys. Rev. B 72, 144109 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    G. Ghosh, S. Delsante, G. Borzone, M. Asta, R. Ferro, Acta Mater. 54, 4977 (2006).CrossRefGoogle Scholar
  35. 35.
    G. Ghosh, S. Vaynman, M. Asta, M.E. Fine, Intermetallics 15, 44 (2007).CrossRefGoogle Scholar
  36. 36.
    B.-Y. Tang, N. Wang, W.-Y. Yu, X.-Q. Zeng, W.-J. Ding, Acta Mater. 56, 3353 (2008).CrossRefGoogle Scholar
  37. 37.
    D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Acta Mater. 55, 4475 (2007).CrossRefGoogle Scholar
  38. 38.
    D. Ma, M. Friák, D. Raabe, J. Neugebauer, F. Roters, Phys. Status. Solidi. b 245, 2642 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    W. Counts, M. Friák, C. Battaile, D. Raabe, J. Neugebauer, Phys. Status. Solidi. b 245, 2630 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    W. Counts, M. Friák, D. Raabe, J. Neugebauer, Acta Mater. 57, 69 (2009).CrossRefGoogle Scholar
  41. 41.
    W. Counts, M. Friák, D. Raabe, J. Neugebauer, in Magnesium, 8th International Conference on Magnesium Alloys and their Applications, edited by K.U. Kainer (WILEY-VCH, Weinheim, Germany, 2009) p. 133Google Scholar
  42. 42.
    W.A. Counts, M. Friák, D. Raabe, J. Neugebauer, Adv. Eng. Mat. 12, 572 (2010).CrossRefGoogle Scholar
  43. 43.
    W.A. Counts, M. Friák, D. Raabe, J. Neugebauer, Adv. Eng. Mat. 12, 1198 (2010).CrossRefGoogle Scholar
  44. 44.
    S. Nikolov, Proceedings of the fourth international conference on multiscale materials modeling (mmm-2008), tackling materials complexities via computational science (2008) p. 667Google Scholar
  45. 45.
    S. Nikolov et al., Adv. Mater. 22, 519 (2010).CrossRefGoogle Scholar
  46. 46.
    S. Nikolov et al., J. Mech. Behav. Biomed. Mater. 4, 129 (2011).CrossRefGoogle Scholar
  47. 47.
    P. Elstnerová et al., Acta Biomater. 6, 4506 (2010).CrossRefGoogle Scholar
  48. 48.
    H. Fabritius, Chitin, topics in geobiology, Vol. 34 (Springer Science and Business Media B.V., 2011) pp. 34--60Google Scholar
  49. 49.
    J. von Pezold, A.D.M. Friák, J. Neugebauer, Phys. Rev. B 81, 094203 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    H.Y. Geng, M.H.F. Sluiter, N.X. Chen, Phys. Rev. B 72, 014204 (2005).ADSCrossRefGoogle Scholar
  51. 51.
    E.S. Tasci, M.H.F. Sluiter, A. Pasturel, P. Villars, Acta Mater. 58, 449 (2010).CrossRefGoogle Scholar
  52. 52.
    A. Pasturel, E.S. Tasci, M.H.F. Sluiter, N. Jakse, Phys. Rev. B 81, 140202(R) (2010).ADSCrossRefGoogle Scholar
  53. 53.
    A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).ADSCrossRefGoogle Scholar
  54. 54.
    A. van de Walle, G. Ceder, J. Phase Equilib. 348, 348 (2002).CrossRefGoogle Scholar
  55. 55.
    S. Wei, L. Ferreira, J. Bernard, A. Zunger, Phys. Rev. B 42, 9622 (1990).ADSCrossRefGoogle Scholar
  56. 56.
    L. Chen, D. Holec, Y. Du, P.H. Mayrhofer, Thin Solid Films 519, 5503 (2011).ADSCrossRefGoogle Scholar
  57. 57.
    B. Alling et al., Phys. Rev. B 75, 045123 (2007).ADSCrossRefGoogle Scholar
  58. 58.
    D. Holec et al., Phys. Rev. B 83, 165122 (2011).ADSCrossRefGoogle Scholar
  59. 59.
    D. Holec, R. Franz, P. Mayrhofer, C. Mitterer, J. Phys. D: Appl. Phys. 43, 145403 (2010).ADSCrossRefGoogle Scholar
  60. 60.
    D. Holec, F. Rovere, P.H. Mayrhofer, P.B. Barna, Scr. Mater. 62, 349 (2010).CrossRefGoogle Scholar
  61. 61.
    F. Rovere, D. Music, J. Schneider, P. Mayrhofer, Acta Mater. 58, 2708 (2010).CrossRefGoogle Scholar
  62. 62.
    M. Friák, Advanced intermetallic-based alloys for extreme environment and energy applications, Vol. 1128, p. 59, Mater. Res. Soc. Symp. Proc., Vol. 1124 (MRS, Warrendale, PA, 2009).Google Scholar
  63. 63.
    M. Friák, J. Deges, R. Krein, G. Frommeyer, J. Neugebauer, Intermetallics 18, 1310 (2010).CrossRefGoogle Scholar
  64. 64.
    A. Dick, T. Hickel, J. Neugebauer, Steel Res. Int. 80, 603 (2009).Google Scholar
  65. 65.
    J.Z. Liu, A. van de Walle, G. Ghosh, M. Asta, Phys. Rev. B 72, 144109 (2005).ADSCrossRefGoogle Scholar
  66. 66.
    A. van de Walle, Nat. Mater. 7, 455 (2008).ADSCrossRefGoogle Scholar
  67. 67.
    K. Chen, L.R. Zhao, J.S. Tse, J. Appl. Phys. 93, 2414 (2003).ADSCrossRefGoogle Scholar
  68. 68.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).MathSciNetADSzbMATHCrossRefGoogle Scholar
  69. 69.
    A.V. Hershey, J. Appl. Mech. 9, 49 (1954).Google Scholar
  70. 70.
    H.M. Ledbetter, J. Appl. Phys. 44, 1451 (1973).ADSCrossRefGoogle Scholar
  71. 71.
    R. Hill, Proc. Phys. Soc. London 65, 350 (1952).ADSGoogle Scholar
  72. 72.
    J.J. Gilvarry, Phys. Rev. 103, 1701 (1956).ADSCrossRefGoogle Scholar
  73. 73.
    Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75, 235406 (2007).ADSCrossRefGoogle Scholar
  74. 74.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Stuttgart, 1928).Google Scholar
  75. 75.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).zbMATHCrossRefGoogle Scholar
  76. 76.
    D. Raabe, Z. Zhao, F. Roters, Scr. Mater. 50, 1085 (2004).CrossRefGoogle Scholar
  77. 77.
    D. Raabe, Z. Zhao, W. Mao, Acta Mater. 50, 4379 (2002).CrossRefGoogle Scholar
  78. 78.
    D. Raabe, M. Sachtleber, Z. Zhao, D. Raabe, Mater. Sci. Eng. A 336, 81 (2002).CrossRefGoogle Scholar
  79. 79.
    D. Raabe, P. Klose, B. Engl, K.-P. Inlau, F. Friedel. F. Roters, Adv. Eng. Mater. 4, 169 (2002).CrossRefGoogle Scholar
  80. 80.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58, 1152 (2010).CrossRefGoogle Scholar
  81. 81.
    F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods in Materials Science and Engineering (Wiley-VCH Weinheim, 2010).Google Scholar
  82. 82.
    H. Pi, J. Han, C. Zhang, A.K. Tieu, Z.Y. Jiang, Adv. Mater. Res. 15-17, 935 (2007).CrossRefGoogle Scholar
  83. 83.
    G.I. Taylor, J. Inst. Met. 62, 307 (1938).Google Scholar
  84. 84.
    R. Hill, J.R. Rice, J. Mech. Phys. Solids 20, 401 (1972).ADSzbMATHCrossRefGoogle Scholar
  85. 85.
    R.J. Asaro, J. Appl. Mech. 50, 921 (1983).ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    Z. Zhao, F. Roters, W. Mao, D. Raabe, Adv. Eng. Mater. 3, 984 (2001).CrossRefGoogle Scholar
  87. 87.
    H. Moulinec, P. Suquet, C. R. Acad. Sci. Paris II 318, 1417 (1994).zbMATHGoogle Scholar
  88. 88.
    H. Moulinec, P. Suquet, Comput. Meth. Appl. Mech. Eng. 157, 69 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  89. 89.
    R.A. Lebensohn, Acta Mater. 49, 2723 (2001).CrossRefGoogle Scholar
  90. 90.
    R. Lebensohn, Y. Liu, P.P. Castaneda, Proc. R. Soc. London Ser. A 460, 1381 (2004).ADSzbMATHCrossRefGoogle Scholar
  91. 91.
    R. Lebensohn, R. Brenner, O. Castelnau, A. Rollett, Acta Mater. 56, 3914 (2008).CrossRefGoogle Scholar
  92. 92.
    R. Lebensohn et al., Acta Mater. 57, 1405 (2009).CrossRefGoogle Scholar
  93. 93.
    A.D. Rollett et al., Model. Simul. Mater. Sci. Eng. 18, 074005 (2010).ADSCrossRefGoogle Scholar
  94. 94.
    S.-B. Lee, J. Rickman, A. Rollett, Acta Mater. 55, 615 (2010).CrossRefGoogle Scholar
  95. 95.
    S.-B. Lee, R.A. Lebensohn, A. Rollett, Int. J. Plast. 27, 707 (2011).zbMATHCrossRefGoogle Scholar
  96. 96.
    R. Janisch, N. Ahmed, A. Hartmaier, Phys. Rev. B 81, 184108 (2010).ADSCrossRefGoogle Scholar
  97. 97.
    R. Janisch, C. Elsasser, Int. J. Mater. Res. 100, 1488 (2009).CrossRefGoogle Scholar
  98. 98.
    A. Bohner, R. Janisch, A. Hartmaier, Scripta Mater. 60, 504 (2009).CrossRefGoogle Scholar
  99. 99.
    E. Hristova, R. Janisch, R. Drautz, A. Hartmaier, Comput. Mater. Sci. 50, 1088 (2011).CrossRefGoogle Scholar
  100. 100.
    M. Prechtel, P.L. Ronda, R. Janisch, A. Hartmaier, G. Leugering, P. Steinmann, Int. J. Fract. 168, 15 (2011).CrossRefGoogle Scholar
  101. 101.
    M. Friák, M. Sob, Phys. Rev. B 77, 174117 (2008).ADSCrossRefGoogle Scholar
  102. 102.
    N. Nagasako, M. Jahnatek, R. Asahi, J. Hafner, Phys. Rev. B 81, 094108 (2010).ADSCrossRefGoogle Scholar
  103. 103.
    D. Legut, M. Friák, M. Sob, Phys. Today 61, 10 (2008) ReplayGoogle Scholar
  104. 104.
    S. Ogata, J. Li, J. App. Phys. 106, 113534 (2009).ADSCrossRefGoogle Scholar
  105. 105.
    M. Sob, M. Friák, Intermetallics 17, 523 (2009).CrossRefGoogle Scholar
  106. 106.
    M. Jahnatek, J. Hafner, M. Krajci, Phys. Rev. B 79, 224103 (2009).ADSCrossRefGoogle Scholar
  107. 107.
    D. Legut, M. Friák, M. Sob, Phys. Rev. B 81, 214118 (2010).ADSCrossRefGoogle Scholar
  108. 108.
    J. Zhang, Y. Yang, K. Xu, V. Ji, Comput. Mat. Sci. 43, 917 (2008).CrossRefGoogle Scholar
  109. 109.
    D. Legut, M. Friák, M. Sob, Phys. Rev. Lett. 99, 016402 (2007).ADSCrossRefGoogle Scholar
  110. 110.
    J. Zhang, Y. Yang, K. Xu, V. Ji, Can. J. Phys. 86, 935 (2008).CrossRefGoogle Scholar
  111. 111.
    M. Sob, M. Friák, L. Wang, V. Vitek, Key Eng. Mater. 227, 261 (2002).CrossRefGoogle Scholar
  112. 112.
    H. Wang, M. Li, J. Phys. Cond. Mat. 22, 295405 (2010).CrossRefGoogle Scholar
  113. 113.
    M. Friák, M. Sob, V. Vitek, Phys. Rev. B 63, 052405 (2001).ADSCrossRefGoogle Scholar
  114. 114.
    Y. Liu, Y. Zhang, R. Hong, G. Lu, Chin. Phys. B 18, 1923 (2009).ADSCrossRefGoogle Scholar
  115. 115.
    M. Friák, A. Schindlmayr, M. Scheffler, New J. Phys. 9, 5 (2007).ADSCrossRefGoogle Scholar
  116. 116.
    Y. Liu, H. Zhou, Y. Zhang, S. Jin, G. Lu, Nucl. Instrum. Methods Phys. Res. B 18, 3282 (2009).ADSCrossRefGoogle Scholar
  117. 117.
    M. Sob, M. Friák, D. Legut, J. Fiala, V. Vitek, Mat. Sci. Eng. A 387-389, 148 (2004).CrossRefGoogle Scholar
  118. 118.
    P. Sesták, M. Černý, J. Pokluda, Mat. Sci. Eng. A 481-482, 247 (2008).CrossRefGoogle Scholar
  119. 119.
    M. Černý, J. Pokluda, Acta Mater. 58, 3117 (2010).CrossRefGoogle Scholar
  120. 120.
    J. Pokluda, M. Černý, J. Sandera, M. Sob, J. Computer-Aided Mater. Design 11, 1 (2004).ADSCrossRefGoogle Scholar
  121. 121.
    M. Černý, M. Sob, J. Pokluda, J. Sandera, J. Phys.: Condens. Matter 16, 1045 (2004).ADSCrossRefGoogle Scholar
  122. 122.
    M. Šob, M. Friák, L. Wang, V. Vitek, Proceedings of the International Conference on Solid-Solid Phase Transformations ’99 (jimic-3) (The Japan Institute of Metals, Sendai, 1999) pp. 855--858Google Scholar
  123. 123.
    J. Wang, J. Zhang, K. Xu, Crys. Res. Tech. 44, 184 (2009).CrossRefGoogle Scholar
  124. 124.
    M. Friák, M. Sob, V. Vitek, Phys. Rev. B 68, 184101 (2003).ADSCrossRefGoogle Scholar
  125. 125.
    J. Bhattacharya, A.V. der Ven, Acta Mater. 56, 4226 (2008).CrossRefGoogle Scholar
  126. 126.
    M. Černý, J. Pokluda, M. Sob, M. Friák, J. Sandera, Phys. Rev. B 67, 035116 (2003).ADSCrossRefGoogle Scholar
  127. 127.
    M.J. Mehl, D. Finkenstadt, Phys. Rev. B 77, 052102 (2008).ADSCrossRefGoogle Scholar
  128. 128.
    M. Friák, M. Sob, V. Vitek, Phil. Mag. 83, 3529 (2003).ADSCrossRefGoogle Scholar
  129. 129.
    H. Djohari, F. Milstein, D. Maroudas, Appl. Phys. Lett. 90, 161910 (2007).ADSCrossRefGoogle Scholar
  130. 130.
    M. Friák, M. Šob, V. Vitek, High-Temperature Ordered Intermetallic Alloys ix, MRS Symp. Proc., Vol. 646, (Materials Research Society, Warrendale, 2001) p. N.4.8.1Google Scholar
  131. 131.
    Y. Liu, Y. Zhang, H. Zhou, G. Lu, M. Kohyama, J. Phys. Cond. Mat. 20, 335216 (2008).CrossRefGoogle Scholar
  132. 132.
    M. Šob, M. Friák, L. Wang, V. Vitek, Computational Modeling of Materials, Minerals, and Metals Processing (The Minerals, Metals and Materials Society, Warrendale, PA, 2001) pp. 715--724Google Scholar
  133. 133.
    N. Nagasako, M. Jahnatek, R. Asahi, J. Hafner, Phys. Rev. B 81, 094108 (2010).ADSCrossRefGoogle Scholar
  134. 134.
    M. Jahnatek, M. Krajci, J. Hafner, Phys. Rev. B 76, 014110 (2007).ADSCrossRefGoogle Scholar
  135. 135.
    M. Šob, M. Friák, L. Wang, V. Vitek, Multiscale Modeling of Materials, MRS Symp. Proc., Vol. 538, (Materials Research Society, Pittsburgh, 1999) pp. 523--527Google Scholar
  136. 136.
    R. Zhang, S. Sheng, S. Veprek, Appl. Phys. Lett. 91, 031906 (2007).ADSCrossRefGoogle Scholar
  137. 137.
    M. Šob, M. Friák, L. Wang, V. Vitek, Proceedings of the 1st Meeting of the Molecular Dynamics Committee of the Japanese Society of Materials, 48th period (Japanese Society of Materials, Osaka, 1999) pp. 1--5Google Scholar
  138. 138.
    X. Cui, J. Wang, X. Liang, G. Zhao, Chin. Phys. Lett. 27, 027101 (2010).ADSCrossRefGoogle Scholar
  139. 139.
    M. Šob, M. Friák, D. Legut, V. Vitek, Complex Inorganic Solids - Structural, Stability, and Magnetic Properties of Alloys (Springer-Verlag, Berlin-Heidelberg-New York, 2005) pp. 307--326Google Scholar
  140. 140.
    H. Zhou et al., J. Phys. Cond. Mat. 21, 175407 (2009).ADSCrossRefGoogle Scholar
  141. 141.
    M. Friák, M. Šob, V. Vitek, Electron Correlations and Materials Properties 2, (Kluwer Academic/Plenum Publishers, NY, 2003) pp. 399--415Google Scholar
  142. 142.
    G. Xu et al., Chin. Phys. Lett. 26, 046302 (2009).ADSCrossRefGoogle Scholar
  143. 143.
    D. Legut, M. Šob, Materials Structure and Micromechanics of Fracture v and Book Series, Vol. 567-568 (Materials Science Forum, 2008) pp. 77--80Google Scholar
  144. 144.
    R. Zhang, D. Legut, R. Niewa, A. Argon, S. Veprek, Phys. Rev. B 82, 104104 (2010).ADSCrossRefGoogle Scholar
  145. 145.
    M. Černý, J. Pokluda, J. Phys. Condens. Matter 21, 145406 (2009).ADSCrossRefGoogle Scholar
  146. 146.
    M. Černý, J. Pokluda, Mater. Sci. Eng. A 483-484, 69 (2008).Google Scholar
  147. 147.
    M. Černý, J. Pokluda, Mater. Sci. Forum 56-59, 73 (2008).CrossRefGoogle Scholar
  148. 148.
    M. Černý, J. Pokluda, Comput. Mater. Sci. 44, 127 (2008).CrossRefGoogle Scholar
  149. 149.
    M. Černý, Mater. Sci. Eng. A 462, 432 (2008).Google Scholar
  150. 150.
    M. Černý, R. Boyer, M. Sob, S. Yip, J. Computer-Aided Mater. Design 12, 161 (2005).ADSCrossRefGoogle Scholar
  151. 151.
    M. Zelený, D. Legut, M. Sob, Phys. Rev. B 78, 224105 (2008).ADSCrossRefGoogle Scholar
  152. 152.
    M. Zelený, M. Sob, Phys. Rev. B 77, 155435 (2008).ADSCrossRefGoogle Scholar
  153. 153.
    M. Zelený, M. Sob, J. Hafner, Phys. Rev. B 79, 134421 (2009).ADSCrossRefGoogle Scholar
  154. 154.
    M. Zelený, M. Friák, M. Sob, Phys. Rev. B 83, 184424 (2011).ADSCrossRefGoogle Scholar
  155. 155.
    M. Friák, T. Hickel, A. Udyansky, A. Dick, J. von Pezold, O. Kim, W.A. Counts, M. Sob, T. Gebhardt, D. Music, J. Schneider, D. Raabe, J. Neugebauer, Steel Res. Int. 82, 86 (2010).CrossRefGoogle Scholar
  156. 156.
    C.-S. Kim, A. Rollett, G. Rohrer, Scripta Mater. 54, 1005 (2006).CrossRefGoogle Scholar
  157. 157.
    L. Lymperakis, M. Friák, J. Neugebauer, Eur. Phys. J. ST 177, 41 (2009).CrossRefGoogle Scholar
  158. 158.
    S. Erkoc, Phys. Rep. 278, 79 (1997).ADSCrossRefGoogle Scholar
  159. 159.
    R.M. Nieminen, M.J. Puska, M.J. Manninen, Many-Atom Interactions in Solids, Proceedings in Physics, Vol. 48 (Springer, Berlin, Heidelberg, 1990).Google Scholar
  160. 160.
    P.N. Keating, Phys. Rev. 145, 637 (1966).ADSCrossRefGoogle Scholar
  161. 161.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).ADSCrossRefGoogle Scholar
  162. 162.
    J. Tersoff, Phys. Rev. B 38, 9902 (1988).ADSCrossRefGoogle Scholar
  163. 163.
    J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).ADSCrossRefGoogle Scholar
  164. 164.
    J. Tersoff, Phys. Rev. B 39, 5566 (1989).ADSCrossRefGoogle Scholar
  165. 165.
    F. Stillinger, T. Weber, Phys. Rev. B 31, 5262 (1985).ADSCrossRefGoogle Scholar
  166. 166.
    M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, London, 2003).Google Scholar
  167. 167.
    M.S. Daw, M. Baskes, Phys. Rev. B 29, 6443 (1994).ADSCrossRefGoogle Scholar
  168. 168.
    M.S. Daw, S. Foiles, Mat. Sci. And Engr. Rep. 9, 251 (1993).CrossRefGoogle Scholar
  169. 169.
    R.R. Zope, Y. Mishin, Phys. Rev. B 68, 024102 (2003).ADSCrossRefGoogle Scholar
  170. 170.
    R. Drautz, D.G. Pettifor, Phys. Rev. B 74, 174117 (2006).ADSCrossRefGoogle Scholar
  171. 171.
    T. Hammerschmidt, R. Drautz, D.G. Pettifor, Int. J. Mater. Res. 100, 1479 (2009).CrossRefGoogle Scholar
  172. 172.
    T. Hammerschmidt, P. Kratzer, M. Scheffler, Phys. Rev. B 81, 159905 (2010).ADSCrossRefGoogle Scholar
  173. 173.
    K.A. Fichthorn, Y. Tiwary, T. Hammerschmidt, P. Kratzer, M. Scheffler, Phys. Rev. B 83, 195328 (2011).ADSCrossRefGoogle Scholar
  174. 174.
    B. Seiser, T. Hammerschmidt, A.N. Kolmogorov, R. Drautz, D.G. Pettifor, Phys. Rev. B 83, 224116 (2011).ADSCrossRefGoogle Scholar
  175. 175.
    A.I. Duff, M.H.F. Sluiter, Mater. Trans. 51, 675 (2010).CrossRefGoogle Scholar
  176. 176.
    B. Lee, S. Choi, Modeling Simul. Mater. Sci. Eng. 12, 621 (2004).MathSciNetADSCrossRefGoogle Scholar
  177. 177.
    P. Fratzl, O. Penrose, J. Lebowitz, J. Stat. Phys. 95, 1429 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  178. 178.
    J.A.K. Thornton, P.W. Voorhees, Acta. Mater. 51, 5675 (2003).CrossRefGoogle Scholar
  179. 179.
    N. Moelans, B. Blanpaina, P. Wollantsa, Calphad 32, 268 (2008).CrossRefGoogle Scholar
  180. 180.
    W. Boettinger, J. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002).CrossRefGoogle Scholar
  181. 181.
    L. Chen, Annu. Rev. Mater. Res. 32 (2002).Google Scholar
  182. 182.
    M. Plapp, J. Cryst. Growth 303, 49 (2007).ADSCrossRefGoogle Scholar
  183. 183.
    I. Singer-Loginova, H. Singer, Rep. Prog. Phys. 71, 106501 (2008).ADSCrossRefGoogle Scholar
  184. 184.
    I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).MathSciNetADSCrossRefGoogle Scholar
  185. 185.
    H. Emmerich, Adv. Phys. 57, 1 (2008).ADSCrossRefGoogle Scholar
  186. 186.
    H. Emmerich, The Diffuse Interface Approach in Material Science - Thermodynamic Concepts and Applications of Phase-Field Models, Habilitation, Lect. Notes Phys., Vol. 73 (Springer, Berlin, 2003).Google Scholar
  187. 187.
    M. Asta, J. Hoyt, Acta Mater. 48, 1089 (2000).CrossRefGoogle Scholar
  188. 188.
    V. Vaithyanathan, L. Chen, Acta Mater. 50, 4031 (2002).CrossRefGoogle Scholar
  189. 189.
    A. Ardell, R. Nicholson, Acta Metall. 14, 1295 (1966).CrossRefGoogle Scholar
  190. 190.
    J. Cho, A. Ardell, Acta Mater. 45, 1393 (1997).CrossRefGoogle Scholar
  191. 191.
    J. Cho, A. Ardell, Acta Mater. 46, 5907 (1998).CrossRefGoogle Scholar
  192. 192.
    M. Doi Mater. Trans. JIM336371992CrossRefGoogle Scholar
  193. 193.
    P. Voorhees, Annu. Rev. Mater. Sci. 22, 197 (1992).ADSCrossRefGoogle Scholar
  194. 194.
    H. Emmerich, Philos. Mag. 90, 1495 (2010).ADSCrossRefGoogle Scholar
  195. 195.
    H. Emmerich, Cont. Mech. Thermodynamics 15, 197 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  196. 196.
    Z. Ebrahimi, J.L. Rezende, J. Kundin, in preparation (2011).Google Scholar
  197. 197.
    R. Folch, M. Plapp, Phys. Rev. E 72, 011602 (2005).MathSciNetADSCrossRefGoogle Scholar
  198. 198.
    B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70, 061604 (2004).ADSCrossRefGoogle Scholar
  199. 199.
    J. Tiaden, B. Nestler, H. Diepers, I. Steinbach, Physica D 115, 73 (1998).ADSzbMATHCrossRefGoogle Scholar
  200. 200.
    S.G. Kim, W. Kim, T. Suzuki, Phys. Rev. E 60, 7186 (1999).ADSCrossRefGoogle Scholar
  201. 201.
    J. Das, K.B. Kim, F. Baier, W. Löser, J. Eckert, Appl. Phys. Lett. 87, 161907 (2005).ADSCrossRefGoogle Scholar
  202. 202.
    D.V. Louzguine, H. Kato, J. Mater. Res. 19, 3600 (2004).ADSCrossRefGoogle Scholar
  203. 203.
    J. Das, K. Kim, W. Xu, W. Löser, J. Eckert, Mater. Sci. Eng. A 449, 737 (2007).CrossRefGoogle Scholar
  204. 204.
    J. Das, K. Kim, W. Xu, W. ö, J. Eckert, Mat. Sci. Eng. A 449-451, 737 (2007) Proceedings of the 12th International Conference on Rapidly Quenched and Metastable MaterialsCrossRefGoogle Scholar
  205. 205.
    H. Assadi, Solidification and Crystallization (2004).Google Scholar
  206. 206.
    J. Hubert, PhD thesis (RWTH Aachen, 2009).Google Scholar
  207. 207.
    R. Kobayashi, J. Warren, W. Carter, Physica D 119, 415 (1998).ADSCrossRefGoogle Scholar
  208. 208.
    J. Warren, R. Kobayashi, A. Lobkovsky, W. Carter, Acta. Mater. 51, 6035 (2003).CrossRefGoogle Scholar
  209. 209.
    L. Gránásy, T. Börzsönyi, T. Pusztai, Phys. Rev. E 88, 206105 (2002).Google Scholar
  210. 210.
    Z. Ebrahimi, J.L. Rezende, R. Kumar, H. Emmerich, submitted to J. Phys.: Condens. Matter (2011).Google Scholar
  211. 211.
    D. Lewis, T. Pusztai, L. Gránásy, J. Warren, W. Boettinger, J. Met. 56, 34 (2004).Google Scholar
  212. 212.
    A. Schlieter, U. Kühn, J. Eckert, W. Löser, T. Gemming, M. Fríak, J. Neugebauer, Intermetallics 19, 327 (2011).CrossRefGoogle Scholar
  213. 213.
    G. He, W. Löser, J. Eckert, Acta Mater. 51, 5223 (2003).CrossRefGoogle Scholar
  214. 214.
    G. He, J. Eckert, W. Löser, L. Schultz, Nature Mater. 2, 33 (2003).ADSCrossRefGoogle Scholar
  215. 215.
    G. He, J. Eckert, W. Löser, M. Hagiwara, Acta Mater. 52, 3035 (2004).CrossRefGoogle Scholar
  216. 216.
    D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, H. Kato, A. Inoue, Acta Mater. 53, 2009 (2005).CrossRefGoogle Scholar
  217. 217.
    D. Misra, S. Sohn, H. Gabrisch, W. Kim, D. Kim, Intermetallics 18, 342 (2010).CrossRefGoogle Scholar
  218. 218.
    G.A. Song, J.H. Han, T.E. Kim, J.M. Park, D.H. Kim, S. Yi, Y. Seo, N.S. Lee, K.B. Kim, Intermetallics 19, 536 (2011).CrossRefGoogle Scholar
  219. 219.
    D. Misra, S. Sohn, W. Kim, D. Kim, Intermetallics 18, 254 (2010).CrossRefGoogle Scholar
  220. 220.
    L.-F. Zhu, M. Fríak, A. Dick, B. Grabowski, T. Hickel, F. Liot, D. Holes, A. Schlieter, U. Kühn, J. Eckert, Z. Ebrahimi, H. Emmerich, J. Neugebauer, submitted to Acta Mater. (2011).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer 2011

Authors and Affiliations

  • M. Friák
    • 1
    Email author
  • T. Hickel
    • 1
  • B. Grabowski
    • 1
  • L. Lymperakis
    • 1
  • A. Udyansky
    • 1
  • A. Dick
    • 1
  • D. Ma
    • 1
  • F. Roters
    • 1
  • L. -F. Zhu
    • 1
  • A. Schlieter
    • 2
    • 3
  • U. Kühn
    • 2
  • Z. Ebrahimi
    • 4
  • R. A. Lebensohn
    • 5
  • D. Holec
    • 6
  • J. Eckert
    • 2
    • 3
  • H. Emmerich
    • 7
  • D. Raabe
    • 1
  • J. Neugebauer
    • 1
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Institute for Complex MaterialsIFW DresdenDresdenGermany
  3. 3.Institute of Materials ScienceDresden University of TechnologyDresdenGermany
  4. 4.AICES Graduate SchoolRWTH AachenAachenGermany
  5. 5.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  6. 6.Montanuniversität LeobenLeobenAustria
  7. 7.University BayreuthBayreuthGermany

Personalised recommendations