Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Anchoring functional molecules on TiO2 surfaces: A comparison between the carboxylic and the phosphonic acid group

  • 422 Accesses

  • 21 Citations

Abstract

The adsorption of formic acid on clean TiO2 anatase (101) and rutile (110) surfaces is studied by density-functional-based methods and compared with the results for coupling related phosphonic acids to titania surfaces. The preferred adsorption mode of the formic acid on both surfaces is a dissociative bridging bidentate complex, which is similar to the adsorption geometry of phosphonic acid. Higher adsorption energies and shorter Ti-O bond lengths indicate that phosphonic acid binds more strongly to TiO2 than formic acid. The preference for the bidentate adsorption mode is supported by a detailed analysis of the charge distribution in the adsorption complexes. The strong interfacial electronic coupling between the adsorbate orbitals and the electronic states of the anatase (101) surface slab leads to additional states in the band gap of the clean surface. For rutile (110) no or only weak coupling of the adsorbate orbitals and the surface states occurs at the band edges, which leads to an increase of the band gap.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003).

  2. 2.

    A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).

  3. 3.

    M. Rühle, T. Gemming, O. Kienzle, R. Schweinfest, Interface science - knowing more about less, in Electron Microscopy and Analysing 1999, edited by C.J. Kiely, IOP Conf. Ser., Vol. 161 (IOP, Bristol, 1999) pp. 1--8

  4. 4.

    J.H. Stoneham, A.M. Harding, Nat. Mater. 2, 77 (2003).

  5. 5.

    M.W. Finnis, Acta Metall. Mater. 40, 25 (1992).

  6. 6.

    S. Gemming, M. Schreiber, Theoretical investigation of interfaces, in Materials for Tomorrow, edited by S. Gemming, M. Schreiber, J.-B. Suck (Springer, Berlin-Heidelberg-New York, 2007) pp. 91--122

  7. 7.

    S. Köstlmeier, C. Elsässer, B. Meyer, M.W. Finnis, Phys. Stat. Sol. A 166, 417 (1998).

  8. 8.

    S. Köstlmeier, C. Elsässer, J. Phys.: Condens. Matter 12, 1209 (2000).

  9. 9.

    A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004).

  10. 10.

    S. Gemming, G. Seifert, Acta Mater. 16, 4299 (2006).

  11. 11.

    R. Pentcheva, W.E. Pickett, Phys. Rev. B 74, 035112 (2006).

  12. 12.

    R. Pentcheva, W.E. Pickett, Phys. Rev. B 78, 205106 (2008).

  13. 13.

    R. Pentcheva, W.E. Pickett, Phys. Rev. Lett. 102, 107602 (2009).

  14. 14.

    U. Schwingenschlögl, C. Schuster, EPL 86, 27005 (2009).

  15. 15.

    S. Thiel, C.W. Schneider, L. Fitting Kourkoutis, D.A. Muller, N. Reyren, A.D. Caviglia, S. Gariglio, J.-M. Triscone, J. Mannhart, Phys. Rev. Lett. 102, 046809 (2009).

  16. 16.

    F. Hanke, J. Comp. Chem. 32, 1424 (2011).

  17. 17.

    L. Burns, A. Vazquez-Mayagoitia, B. Sumpter, C. Sherrill, J. Chem. Phys. 134, 084107 (2011).

  18. 18.

    A. Abbasi, R. Scholz, J. Phys. Chem. C 113, 19897 (2009).

  19. 19.

    J. Kong, Z. Gan, E. Proynov, M. Freindorf, T. Furlani, Phys. Rev. A 79, 042510 (2009).

  20. 20.

    J. Grafenstein, D. Cremer, J. Chem. Phys. 130, 124105 (2009).

  21. 21.

    K. Morawetz, S. Gemming, R. Luschtinetz, L.M. Eng, G. Seifert, A. Kenfack, New J. Phys. 10, 103014 (2008).

  22. 22.

    K. Morawetz, S. Gemming, R. Luschtinetz, T. Kunze, P. Lipavsky, L.M. Eng, G. Seifert, P. Milde, V. Pankoke, Phys. Rev. B 79, 085405 (2009).

  23. 23.

    S. Gemming, T. Kunze, K. Morawetz, V. Pankoke, R. Luschtinetz, G. Seifert, Eur. Phys. J. ST 177, 83 (2009).

  24. 24.

    H. Emmerich, The Diffuse Interface Approach in Materials Science, 1st edition (Springer Verlag, Berlin, 2011) Number 3-642-05583-4

  25. 25.

    J.E. Taylor, J.W. Cahn, Physica D 112, 381 (1998).

  26. 26.

    H. Emmerich, J. Phys.: Condens. Matter 21, 464103 (2009).

  27. 27.

    R. Siquieri, H. Emmerich, Philos. Mag. Lett. 87, 829 (2007).

  28. 28.

    I. Singer-Loginova, H.M. Singer, Rep. Prog. Phys. 71, 106501 (2008).

  29. 29.

    B. Li, J. Lowengrub, A. Rätz, A. Voigt, Commun. Comput. Phys. 6, 433 (2009).

  30. 30.

    M. Tang, W.C. Carter, R.M. Cannon, Phys. Rev. B 73, 024102 (2006).

  31. 31.

    J.A. Warren, R. Kobayashi, A.E. Lobovsky, W.C. Carter, Acta Mater. 51, 6035 (2003).

  32. 32.

    N. Provatas, M. Greenwood, B. Athreya, N. Goldenfeld, J. Dantzig, Int. J. Mod. Phys. B 19, 4525 (2005).

  33. 33.

    M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57, 941 (2009).

  34. 34.

    C.M. Bishop, W.C. Carter, Comput. Mater. Sci. 25, 378 (2002).

  35. 35.

    A. Subramaniam, C.T. Koch, R.M. Cannon, M. Rühle, Mater. Sci. Eng. A 422, 3 (2006).

  36. 36.

    M. Radke De Cuba, H. Emmerich, S. Gemming, Eur. Phys. J. ST 149, 43 (2007).

  37. 37.

    M. Radke de Cuba, J. Kundin, H. Emmerich, S. Gemming, Physica D 238, 117 (2009).

  38. 38.

    B. Oregan, M. Grätzel, Nature 353, 737 (1991).

  39. 39.

    M. Riede, C. Uhrich, R. Timmreck, J. Widmer, D. Wynands, M. Levichkova, M. Furno, G. Schwartz, W. Gnehr, M. Pfeiffer, K. Leo, Optimization of organic tandem solar cells based on small molecules, in 35th IEEE Photovoltaic Specialists Conference, IEEE Photovoltaic Specialists (IEEE, NY, 2010) Number 978-1-4244-5891-2

  40. 40.

    G. Heimel, I. Salzmann, S. Duhm, N. Koch, Chem. Mater. 23, 359 (2011).

  41. 41.

    S. Scheinert, G. Paasch, I. Horselmann, A. Herasimovich, Org. Electr. 223, 155 (2010).

  42. 42.

    K. Müller, Y. Burkov, D. Schmeisser, Thin Solid Films 495, 219 (2006).

  43. 43.

    K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, Nature 438, 197 (2005).

  44. 44.

    M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys.: Condens. Matter 20, 083203 (2008).

  45. 45.

    L.A. Zotti, T. Kirchner, J.-C. Cuevas, F. Pauly, T. Huhn, E. Scheer, A. Erbe, Small 6, 1529 (2010).

  46. 46.

    S.-P. Liu, S. Weisbrod, Z. Tang, A. Marx, E. Scheer, A. Erbe, Angew. Chem. Int. Ed. 49, 3313 (2010).

  47. 47.

    L. Luo, S. Choi, C. Frisbie, Chem. Mater. 23, 631 (2011).

  48. 48.

    K. Haubner, E. Jähne, H.-J.P. Adler, D. Köhler, C. Loppacher, L.M. Eng, J. Grenzer, A. Herasimovic, S. Scheinert, Phys. Stat. Sol. A 205, 430 (2008).

  49. 49.

    A. Operamolla, G. Farinola, Eur. J. Org. Chem. 3, 423 (2011).

  50. 50.

    S. Gemming, R. Luschtinetz, I. Chaplygin, G. Seifert, C. Loppacher, Lukas M. Eng, T. Kunze, C. Olbrich, Eur. Phys. J. ST 149, 145 (2007).

  51. 51.

    T. Kunze, S. Gemming, R. Luschtinetz, V. Pankoke, K. Morawetz, G. Seifert, Phys. Rev. B 81, 115401 (2010).

  52. 52.

    A. Ulman, Chem. Rev. 96, 1533 (1996).

  53. 53.

    R. Helmy, A.Y. Fadeev, Langmuir 18, 8924 (2002).

  54. 54.

    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993).

  55. 55.

    J. Schnadt, P.A. Bruhwiler, L. Patthey, J.N. O’Shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, N. Martensson, Nature 418, 620 (2002).

  56. 56.

    E. Jähne, D. Ferse, G. Busch, H.-J.P. Adler, A. Singh, I. Varma, Des. Mon. Polymers 5, 427 (2002).

  57. 57.

    B. Adolphi, E. Jähne, G. Busch, X. Cai, Anal. Bioanal. Chem. 379, 646 (2004).

  58. 58.

    R. Luschtinetz, J. Frenzel, T. Milek, G. Seifert, J. Phys. Chem. C 113, 5730 (2009).

  59. 59.

    D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995).

  60. 60.

    M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998).

  61. 61.

    G. Seifert, J. Phys. Chem. A 111, 5609 (2007).

  62. 62.

    A.F. Oliveira, G. Seifert, T. Heine, H.A. Duarte, J. Braz. Chem. Soc. 20, 1193 (2009).

  63. 63.

    B. Aradi, B. Hourahine, Ch. Köhler, Th. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).

  64. 64.

    R. Luschtinetz, G. Seifert, E. Jähne, H.-J.P. Adler, Macromol. Symp. 254, 248 (2007).

  65. 65.

    R. Luschtinetz, A.F. Oliveira, J. Frenzel, J.O. Joswig, G. Seifert, H.A. Duarte, Surf. Sci. 602, 1347 (2008).

  66. 66.

    R. Luschtinetz, A.F. Oliveira, H.A. Duarte, G. Seifert, Z. Anorg. Allg. Chemie 636, 1506 (2010).

  67. 67.

    S. Gemming, A.N. Enyashin, J. Frenzel, G. Seifert, Int. J. Mater. Res. 101, 758 (2010).

  68. 68.

    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

  69. 69.

    S.P. Bates, G. Kresse, M.J. Gillan, Surf. Sci. 409, 336 (1998).

  70. 70.

    C.L. Pang, R. Lindsay, G. Thornton, Chem. Soc. Rev. 37, 2328 (2008).

  71. 71.

    S.P. Bates, M.J. Gillan, G. Kresse, J. Phys. Chem. B 102, 2017 (1998).

  72. 72.

    S. Köppen, W. Langel, Phys. Chem. Chem. Phys. 10, 1907 (2008).

  73. 73.

    U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

  74. 74.

    A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, Phys. Rev. Lett. 81, 2954 (1998).

  75. 75.

    S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara, M. Salmeron, A. Nilsson, J. Phys.: Condens. Matter 20, 184025 (2008).

  76. 76.

    A. Vittadini, M. Casarin, A. Selloni, Theor. Chem. Acc. 117, 663 (2007).

  77. 77.

    M.A. Henderson, Surf. Sci. Rep. 46, 1 (2002).

  78. 78.

    M.A. Barteau, Chem. Rev 96, 1413 (1996).

  79. 79.

    L. Ojamäe, C. Aulin, H. Pedersen, P.-O. Käll, J. Colloid Interf. Sci. 296, 71 (2006).

  80. 80.

    J. Randon, P. Blanc, R. Paterson, J. Membr. Sci. 98, 119 (1995).

  81. 81.

    S. Marcinko, A.Y. Fadeev, Langmuir 20, 2270 (2004).

  82. 82.

    G. Guerrero, P.H. Mutin, A. Vioux, Chem. Mater. 13, 4367 (2001).

  83. 83.

    P.H. Mutin, V. Lafond, A.F. Popa, M. Granier, L. Markey, A. Dereux, Chem. Mater. 16, 5670 (2004).

  84. 84.

    A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, J. Phys. Chem. B 104, 1300 (2000).

  85. 85.

    H. Onishi, T. Aruga, Y.J. Iwasawa, J. Am. Chem. Soc. 115, 10460 (1993).

  86. 86.

    K. Fukui, H. Onishi, Y.J. Iwasawa, Chem. Phys. Lett. 280, 296 (1997).

  87. 87.

    S.A. Chambers, S. Tevuthasan, Y.J. Kim, G.S. Herman, Z. Wang, E. Tober, R. Ynzunza, J. Morais, C.H.F. Peden, K. Ferris, C.S. Fadley, Chem. Phys. Lett. 267, 51 (1997).

  88. 88.

    D.I. Sayago, M. Polcik, R. Lindsay, R.L. Toomes, J.T. Hoeft, M. Kittel, D.P. Woodruff, J. Phys. Chem. B 108, 14316 (2004).

  89. 89.

    F.P. Rotzinger, J.M. Kesselman-Truttmann, S.J. Hug, V. Shklover, M. Grätzel, J. Phys. Chem. B 108, 5004 (2004).

  90. 90.

    Y. Uemura, T. Taniike, M. Tada, Y. Morikawa, Y. Iwasawa, J. Phys. Chem. C 111, 16379 (2007).

  91. 91.

    J. Ahdjoudj, C. Minot, Catal. Lett. 46, 83 (1997).

  92. 92.

    P. Käckell, K. Terakura, Surf. Sci. 461, 191 (2000).

  93. 93.

    M. Nilsing, P. Persson, S. Lunell, L. Ojamäe, J. Phys. Chem. C 111, 12116 (2007).

  94. 94.

    M. Nilsing, S. Lunell, P. Persson, L. Ojamäe, Surf. Sci. 582, 49 (2005).

  95. 95.

    P. Raghunath, M.C. Lin, J. Phys. Chem. C 112, 8276 (2008).

  96. 96.

    D. Szieberth, A.M. Ferrari, X. Dong, Phys. Chem. Chem. Phys. 12, 11033 (2010).

  97. 97.

    K.S. Kim, M.A. Barteau, Langmuir 4, 945 (1988).

  98. 98.

    K.L. Miller, C.W. Lee, J.L. Falconer, J.W. Medlin, J. Catal. 275, 294 (2010).

  99. 99.

    G.Y. Popova, T.V. Andrushkevich, Y.A. Chesalov, E.S. Stoyanov, Kinet. Catal. 41, 805 (2000).

  100. 100.

    N.W. Duffy, K.D. Dobson, K.C. Gordon, B.H. Robinson, A.J. McQuillan, Chem. Phys. Lett. 266, 451 (1997).

  101. 101.

    K.S. Finnie, J.R. Bartlett, J.L. Woolfrey, Langmuir 14, 2744 (1998).

  102. 102.

    C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys. Chem. B 106, 12693 (2002).

  103. 103.

    W.K. Li, X.-Q. Gong, G. Lu, A. Selloni, J. Phys. Chem. C 112, 6594 (2008).

  104. 104.

    X.-Q. Gong, A. Selloni, J. Catal. 249, 134 (2007).

  105. 105.

    P. Raghunath, M.C. Lin, J. Phys. Chem. C 113, 8394 (2009).

  106. 106.

    W. Gao, L. Dickinson, C. Grozinger, F.G. Morin, L. Reven, Langmuir 12, 6429 (1996).

  107. 107.

    S. Pawsey, M. McCormick, S De Paul, R. Graf, Y.S. Lee, L. Reven, H.W. Spiess, J. Am. Chem. Soc. 125, 4174 (2003).

  108. 108.

    E.S. Gawalt, M.J. Avaltroni, N. Koch, J. Schwartz, Langmuir 17, 5736 (2001).

  109. 109.

    S. Pawsey, K. Yach, L. Reven, Langmuir 18, 5205 (2002).

  110. 110.

    P. Pèchy, F.P. Rotzinger, M.K. Nazeeruddin, O. Kohle, S.M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, J. Chem. Soc. Chem. Commun., page 65 (1995).

  111. 111.

    I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Aragazzi, E. Costa, C.A. Bignozzi, P. Qu, G.J. Meyer, Inorg. Chem. 40, 6073 (2001).

  112. 112.

    M. Nilsing, P. Persson, L. Ojamäe, Chem. Phys. Lett. 415, 375 (2005).

Download references

Author information

Correspondence to R. Luschtinetz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luschtinetz, R., Gemming, S. & Seifert, G. Anchoring functional molecules on TiO2 surfaces: A comparison between the carboxylic and the phosphonic acid group. Eur. Phys. J. Plus 126, 98 (2011). https://doi.org/10.1140/epjp/i2011-11098-4

Download citation

Keywords

  • Rutile
  • Adsorption Energy
  • HCOOH
  • Phosphonic Acid
  • Adsorption Complex