Advertisement

A note on Lorentz transformations and simultaneity in classical physics and special relativity

  • Angelo PaganoEmail author
  • Emanuele V. Pagano
Article
  • 14 Downloads

Abstract

Since early models of wave propagation in both stationary and moving media during the nineteenth century, the Lorentz transformation (LT) has played a key role in describing characteristic wave phenomena, e.g., the Doppler shift effect. In these models LT connects two different events generated by wave propagations, as observed in two reference systems and the synchronism is absolute. In relativistic physics LT implements the relativity principle. As a consequence, it connects two space-time event coordinates that both correspond to the same physical event and “absolute synchronization” is not allowed. The relativistic interpretation started from Einstein’s early criticism of the notion of “simultaneity” and Minkowski’s invariance of the space-time interval. In this paper, the two different roles of LT, i.e., in classical wave propagation theories and in relativistic physics, are discussed. Einstein’s early criticism is also re-examined with respect to LT in view of its significance for the notion of simultaneity. Indeed, that early criticism is found to be defective. Our analysis is also useful for general readers in view of its impact on modern speculations about the existence of a preferred system of reference Σ, where light propagation is isotropic, and related implications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolós V.J., Liern V., and Olivert J. 2002. Relativistic Simultaneity and Causality, Int. J. Theor. Phys. 41, No. 6, June: 1007–1018. MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bridgman P.M.A. 1927. The logic of modern Physics, N.Y. the Macmillan Company: 164–165. Google Scholar
  3. 3.
    Consoli M., Pagano A. and Pappalardo L. 2003. Vacuum condensates and ether-drift experiments, Phys. Lett. A 318: 292–299. ADSCrossRefGoogle Scholar
  4. 4.
    Consoli M. and Pluchino A. 2018. Cosmic Microwave Background and the issue of a fundamental preferred frame, Eur. Phys. J. Plus, 133: 295. CrossRefGoogle Scholar
  5. 5.
    Consoli M. and Pluchino A. 2019. Michelson-Morley Experiments-An Enigma for Physics and the History of Science, World Scientific Publishing Co. Pte.Ltd. and references therein. Google Scholar
  6. 6.
    Di Mauro P., Notarrigo S, and Pagano A. 1997. Riesame della teoria di Augusto Righi sull’ apparato dell’esperimento di Michelson e Morley, Quaderni di Storiadella Fisica, 2, Ed. Compositori Bologna, SIF: 101–110. Google Scholar
  7. 7.
    Einstein A. 1905. Zur Elektrodynamik bewegter Körper, Ann. Phys. 17: 891–921. CrossRefGoogle Scholar
  8. 8.
    Ernstt A. and Jong-Ping Hsu. 2001. First Proposal of the Universal Speed of Light by Voigt in 1887, Chin. J. Phys. 39, 3: 211–230. Google Scholar
  9. 9.
    Feynman R.P., Leighton R.B., and Sands M. 1966. The Feynman Lectures on Physics, 2nd edn. Addison Wesley, Reading, Massachusetts, : Chap. 15–6. Google Scholar
  10. 10.
    Grünbaum A. 2010. David Malament and the Conventionality of Simultaneity: A Reply, Found. Phys., 40: 1285–1297. ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hirosige T. 1968. Theory of Relativity and the Ether, Jap. Studies in the History of Science, 7: 37–53. Google Scholar
  12. 12.
    Jammer M. 2006 Concepts of Simultaneity From Antiquity to Einstein and Beyond, Edited by The Johns Hopkins University Press, Baltimore. Google Scholar
  13. 13.
    Klein F.C. 1927. Vorlesungen üuber die Entwicklung der Mathematik im 19, Jahrhundert, Teil II, Springer. Google Scholar
  14. 14.
    Kostro L. 2000. Einstein and the Ether, First Pub. by Apeiron. Canada. Google Scholar
  15. 15.
    La Rosa M. 1923. Le concept de temps dans la Théorie d’Einstein, II partie: Le Postulat de la constance de la vitesse de la lumière, Scientia, July–August, Vol. XXXIV: 293–306. Google Scholar
  16. 16.
    Landau L.D. and Lifshitz E.M. 2000. The classical theory of Fields, 2, Butterworth-, Linacre House, Jordan Hill, Oxford. Google Scholar
  17. 17.
    Leighton R.B. 1959. Principles of Modern Physics, McGraw-Hill Book Company Inc., New York Toronto London. Google Scholar
  18. 18.
    Lorentz H.A. 1909. The Theory of Electrons, The New York, The Columbia University Press, Macmillan Company, LTD. Google Scholar
  19. 19.
    Mamone-Caprio M. 2012. Simultaneity as an Invariant Equivalence Relation, Found. Phys. 42: 1365–1383. ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Mann R.A. 1974. The classical Dynamics of Particles, Academic Press, Inc ., New York London. Google Scholar
  21. 21.
    Michelson A.A. and Morley E.W. 1887. Am. J. Sci. 34: 333. ADSCrossRefGoogle Scholar
  22. 22.
    Minkowski H. 1908. Die Grundgleichungen fü r die elektromagnetischen Vorgänge in bewegter Körper, Gött. Nachr. 53. Google Scholar
  23. 23.
    Minkowski H. 1909 Raum und Zeit, Phys. Zeits. 10: 104. English trans. 1923: Space and time, Lorentz H.A., Einstein, A., Minkowski H., Weyl H., The Principle of Relativity, Methuen, London. 08540: Chap. 11. zbMATHGoogle Scholar
  24. 24.
    Mittelstaedt P. 2011. The Problem of Interpretation of Modern Physics, Found. Phys. 41: 1667–1676. ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Morse P.M. and Ingard K.U. 1986. Theoretical Acostics, Princeton University Press, Princeton, New Jersey. Google Scholar
  26. 26.
    Pauli W. 1921. Theory of Relativity, translated from German by G. Field, Pergamon Press, London, 1958. Google Scholar
  27. 27.
    Poincaré H. 1905. The principles of Mathemathical Physics, English Translation by G.B. Halsted, The Monist XV: 1–24. MathSciNetzbMATHGoogle Scholar
  28. 28.
    Prokhovnik S.J. 1993. The Physical Interpretation of Special Relativity - a Vindication of Hendrik Lorentz, Z. Naturforschung, 48a: 925–931. ADSCrossRefGoogle Scholar
  29. 29.
    Shanahan D. 2014. A Case for Lorentzian Relativity, Found. Phys. 44: 349–367. ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Synge J.L. 1956. Relativity: The Special Theory, North-Holland Pub. Comp., Amsterdam. Google Scholar
  31. 31.
    Somigliana C. 1922. Sulla trasformazione di Lorentz, Rend. Mat. Acc. dei Lincei, s.5, 31: 409–414. zbMATHGoogle Scholar
  32. 32.
    Van Camp W. 2011. On Kinematic versus Dynamic Approaches to Special Relativity, Philosophy of Science, 78, No. 5, The University of Chicago Press on behalf of the Philosophy of Science Association: 1097–1107. MathSciNetCrossRefGoogle Scholar
  33. 33.
    Voigt W. 1887. Über das Doppler’sche Prinzip, Nachirichten der Konigliche Gesellschaft der Wissenschaften zu Göttingen, 41. Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica Nucleare (INFN)CataniaItaly
  2. 2.Laboratori Nazionali del Sud (INFN-LNS)CataniaItaly

Personalised recommendations