Advertisement

The European Physical Journal H

, Volume 44, Issue 4–5, pp 271–305 | Cite as

History of accelerator neutrino beams

  • Ubaldo Dore
  • Pier Loverre
  • Lucio LudoviciEmail author
Article
  • 31 Downloads

Abstract

Neutrino beams obtained from proton accelerators were first operated in 1962. Since then, neutrino beams have been intensively used in particle physics and evolved in many different ways. We describe the characteristics of various neutrino beams, relating them to the historical development of the physics studies and discoveries. We also discuss some of the ideas still under consideration for future neutrino beams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott T. et al. (E-802 Collaboration) 1992. Measurement of particle production in proton induced reactions at 14.6 GeV∕mathrmc.Phys. Rev. D45: 3906 ADSGoogle Scholar
  2. 2.
    Abdurashitov J.N. et al. (SAGE Collaboration) 1994. Results from SAGE.Phys. Lett. B328: 234 ADSGoogle Scholar
  3. 3.
    Abe K. et al. (T2K Collaboration) 2011. The T2K experiment.Nucl. Instrum. Meth. A659: 106 ADSGoogle Scholar
  4. 4.
    Abe K. et al. (Hyper-Kamiokande Collaboration) 2015. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande.Nucl. Instrum. Meth. A659: 106 ADSGoogle Scholar
  5. 5.
    Abgrall N. et al. (NA61/SHINE Collaboration) 2018. Measurements of πpm, K± and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV∕c protons with the NA61/SHINE spectrometer at the CERN SPS.Eur. Phys. J. C79: 100 Google Scholar
  6. 6.
    Abramowicz H. et al. 1982. Prompt neutrino production in a proton beam-dump experiment.Z. Phys. C13: 179–89 ADSGoogle Scholar
  7. 7.
    Acciarri R. et al. (DUNE Collaboration) 2015. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE).FERMILAB-DESIGN-2016-02 https://arXiv:1512.06148
  8. 8.
    Adamson P. et al. 2015. The NuMI Neutrino Beam.Nucl. Instrum. Meth. A806 279 ADSGoogle Scholar
  9. 9.
    Adey D. et al. 2013. nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC.FERMILAB-PROPOSAL1028. https://arXiv:1308.6822
  10. 10.
    Agafonova N. et al. (OPERA Collaboration) 2010. Observation of a first Pnutau candidate in the OPERA experiment in the CNGS beam.Phys. Lett. B691: 138 ADSGoogle Scholar
  11. 11.
    Agafonova N. et al. (OPERA Collaboration) 2018. Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam.Phys. Rev. Lett. 120: 211801. [Erratum: Phys. Rev. Lett. 121: 139901] ADSGoogle Scholar
  12. 12.
    Ahmad Q.R. et al. (SNO Collaboration) 2002. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory.Phys. Rev. Lett. 89: 011301 ADSGoogle Scholar
  13. 13.
    Ahn M.H. et al. (K2K Collaboration) 2003. Indications of neutrino oscillation in a 250 km long baseline experiment.Phys. Rev. Lett. 90: 041801 ADSGoogle Scholar
  14. 14.
    Ahn M.H. et al. (K2K Collaboration) 2006. Measurement of neutrino oscillation by the K2K experiment.Phys. Rev. D74: 072003 ADSGoogle Scholar
  15. 15.
    Ahrens L.A. et al. 1990. Determination of electroweak parameters from the elastic scattering of muon neutrinos and antineutrinos on electrons.Phys. Rev. D41: 3297 ADSGoogle Scholar
  16. 16.
    Akimov D. 2017. Observation of coherent elastic neutrino-nucleus scattering.Science357 6356: 1123 ADSGoogle Scholar
  17. 17.
    Allaby J.V. et al. 1970. High-energy particle spectra from proton interactions at 19.2 GeV∕c. DOI: https://doi.org/10.5170/CERN-1970-012
  18. 18.
    Amrosini G. et al. (NA56/SPY Collaboration) 1999. Measurement of charged particle production from 450 GeV∕c protons on beryllium.Eur. Phys. J. C10: 605 ADSGoogle Scholar
  19. 19.
    Anelli M. et al. (Ship Collaboration) 2015. A facility to Search for Hidden Particles (SHiP) at the CERN SPS. https://arXiv:1504.04956
  20. 20.
    Anselmann P. et al. (GALLEX Collaboration) 1992. Neutrinos observed by GALLEX at Gran Sasso.Phys. Lett. B285: 376 ADSGoogle Scholar
  21. 21.
    Antonello M. et al. (MicroBooNE, LAr1-ND and ICARUS-WA104 Collaborations) 2015. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. https://arXiv:1503.01520
  22. 22.
    Armbruster B. et al. (KARMEN Collaboration) 1998. Measurement of the weak neutral current excitation.   12C(νμν′μ)12C*(1+, 1; 15.1 MeV) at Eν = 29.8 MeV.Phys. Lett B423: 15 ADSGoogle Scholar
  23. 23.
    Asratyan A.E. et al. 1978. Search for prompt neutrinos in 70 GeV pN collisions.Phys. Lett. B79: 497 ADSGoogle Scholar
  24. 24.
    Astier P. et al. 1990. A search for neutrino oscillation.Nucl. Phys. B335: 517 ADSGoogle Scholar
  25. 25.
    Atherton H.W. et al. 1980. Precise measurements of particle production by 400 GeV∕c protonson beryllium targets. DOI: https://doi.org/10.5170/CERN-1980-007
  26. 26.
    Auerbach L.B. et al. 2001. Measurement of charged-current reactions of νe on 12 C.Phys. Rev. C64: 065501 ADSGoogle Scholar
  27. 27.
    Ayres D.S. et al. 2007. The NOνA Technical Design Report.FERMILAB-DESIGN-2007-1. DOI: https://doi.org/10.2172/935497
  28. 28.
    Astier P. et al. (NOMAD Collaboration) 2001. Final NOMAD results on νμντ and νe → ντ oscillations including a new search for ντ appearance using hadronic τ decays.Nucl. Phys. B611: 3 ADSGoogle Scholar
  29. 29.
    Aubert B. et al. 1974. Measurement of rates for muonless deep inelastic neutrino and antineutrino interactions.Phys. Rev. Lett. 32: 1457 ADSGoogle Scholar
  30. 30.
    Baker W.F. et al. 1974. Measurement of π± , K±, p, and p− production by 200 and 300 GeV∕c protons.Phys. Lett. B51: 303 ADSGoogle Scholar
  31. 31.
    Baldy R. et al. 1999. The CERN Neutrino beam to Gran Sasso (NGS).CERN-SL99-34-DI Google Scholar
  32. 32.
    Barish B.C. et al. 1975. Neutral currents in high-energy neutrino collisions: an experimental search.Phys. Rev. Lett. 34: 538 ADSGoogle Scholar
  33. 33.
    Barish S.J. et al. 1974. Observation of single-pion production by a weak neutral current.Phys. Rev. Lett. 33: 448 ADSGoogle Scholar
  34. 34.
    Beavis D. et al. 1995. Long Baseline Neutrino Oscillation Experiment, E889, Physics Design Report.April 1995 BNL-52459 Google Scholar
  35. 35.
    Benvenuti A.C. et al. 1975. Observation of New-Particle production by high-energy neutrinos and antineutrinos.Phys. Rev. Lett. 34: 419 ADSGoogle Scholar
  36. 36.
    Berge P. et al. 1987. Total neutrino and antineutrino charged current cross section measurements in 100, 160, and 200 GeV narrow band beams.Z. Phys. C35: 443 ADSGoogle Scholar
  37. 37.
    Berge P. et al. 1992. Prompt neutrino results from a proton beam dump experiment.Z. Phys. C56: 175–180 ADSGoogle Scholar
  38. 38.
    Bergsma F. et al. 1984. A search for oscillations of muon neutrinos in an experiment with L/E ≅ 0.7 km/GeV.Phys. Lett. B142: 103 ADSGoogle Scholar
  39. 39.
    Bernardini G. 1964. Neutrino physics experimental.Conference ProceedingsC64-08-05: 37 Google Scholar
  40. 40.
    Bernardini G. et al. 1964. Search for intermediate boson production in high-energy neutrino interactions.Phys. Lett. 13: 86 ADSGoogle Scholar
  41. 41.
    Bernardi G. et al. 1986. Anomalous electron production observed in the CERN PS neutrino beam.Phys. Lett. B181: 173 ADSGoogle Scholar
  42. 42.
    Bernstein R.H. et al. 1988. A proposal for a neutrino oscillation experiment in a tagged neutrino line.FERMILAB-PROPOSAL-0788 Google Scholar
  43. 43.
    Bienlein J.K. et al. 1964. Spark chamber study of high-energy neutrino interactions.Phys. Lett. 13: 80 ADSGoogle Scholar
  44. 44.
    Bilenky S.M. 1992. Lepton mixing. In Winter, K. (ed.).Neutrino physics: 177–195 Google Scholar
  45. 45.
    Bjorken J.D. 1968. Asymptotic Sum Rules at Infinite Momentum.Phys. Rev. 179: 1547 ADSGoogle Scholar
  46. 46.
    Block M.M. et al. 1964. Neutrino interactions in the CERN heavy liquid bubble chamber.Phys. Rev. Lett. 12: 262 ADSGoogle Scholar
  47. 47.
    Blondel A. 2005. Physics at a Neutrino Factory Complex.Nucl. Phys. B (Proc. Suppl.)143: 282 ADSGoogle Scholar
  48. 48.
    Bloom E.D. et al. 1969. High-Energy Inelastic e-p Scattering at 6° and 10°.Phys. Rev. Lett. 23: 930 ADSGoogle Scholar
  49. 49.
    Blumlein J. et al. 1992. Investigation of prompt electron-neutrino production in a proton beam dump experiment with the IHEP-JINR neutrino detector.Phys. Lett. B279: 405 ADSGoogle Scholar
  50. 50.
    Bogert D. et al. 1985. Determination of the Nucleon Structure by Means of the Weak Neutral Current.Phys. Rev. Lett. 55: 574 ADSGoogle Scholar
  51. 51.
    Breidenbach M. et al. 1969. Observed behavior of highly inelastic electron-proton scattering.Phys. Rev. Lett. 23: 935 ADSGoogle Scholar
  52. 52.
    Burguet-Castell J. et al. 2004. Neutrino oscillation physics with a higher gamma beta beam.Nucl. Phys. B695: 217 ADSGoogle Scholar
  53. 53.
    Burns R. et al. 1965. Determination of the neutrino flux. Presented by L. Lederman at the Informal conference on experimental neutrino physics 1965.ProceedingsCERN 65-32: 97 Google Scholar
  54. 54.
    Cao J. et al. 2017. Roadmap for the international accelerator-based neutrino programme.FERMILAB-FN1031. https://arXiv:1704.08181
  55. 55.
    Carey D.C., R.J. Stefanski and L.C. Teng 1971. Wide band neutrino beams with quadrupole focusing.IEEETrans. Nucl. Sci. 18: 755 ADSGoogle Scholar
  56. 56.
    Catanesi M.G. et al. (HARP Collaboration) 2007. The HARP detector at the CERN PS.Nucl. Instrum. Meth. A571: 527 ADSGoogle Scholar
  57. 57.
    Cazzoli E.G. et al. 1975. Evidence for ΔS = − ΔQ currents or Charmed-Baryon production by neutrinos.Phys. Rev. Lett. 34: 1125 ADSGoogle Scholar
  58. 58.
    Chen H.H. 1982. Neutrino Oscillation Experiments at Accelerators.Prog. Phys. 6: 206–21 Google Scholar
  59. 59.
    Cho Y. et al. 1971. Pion production in proton-beryllium collisions at 12.4 GeV∕c.Phys. Rev. D4: 1967 ADSGoogle Scholar
  60. 60.
    Cline D. and D. Neuffer 1980. A muon storage ring for neutrino oscillations experiments.AIP Conference Proceedings68: 856 ADSGoogle Scholar
  61. 61.
    Conrad J.M., M.H. Shaevitz, and T. Bolton 1998. Precision measurements with high-energy neutrino beams.Rev. Mod. Phys. 70: 1341 ADSGoogle Scholar
  62. 62.
    Cowan C.L. et al. 1956. Detection of the Free Neutrino: a Confirmation.Science124: 103 ADSGoogle Scholar
  63. 63.
    Danby G. et al. 1962. Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos.Phys. Rev. Lett. 9: 36 ADSGoogle Scholar
  64. 64.
    Davis R. Jr., D.S. Harmer, and K.C. Hoffman. 1968. Search for neutrinos from the sun.Phys. Rev. Lett. 20: 1205 ADSGoogle Scholar
  65. 65.
    De Rujula A. and R. Ruckl 1984. Neutrino and muon physics in the collider mode of future accelerators.CERN-TH3892/84 Google Scholar
  66. 66.
    De Rujula A., E. Fernandez and J.J. Gomez-Cadenas 1993. Neutrino fluxes at future hadron colliders.Nucl. Phys. B405: 80 ADSGoogle Scholar
  67. 67.
    Derwent P. 2012. Accelerators for intensity frontier research.Conference ProceedingsC1205201: 4185 Google Scholar
  68. 68.
    Diemoz M.F. Ferroni and E. Longo 1986. Nucleon structure functions from neutrino scattering.Phys. Rep. 130: 293–380 ADSGoogle Scholar
  69. 69.
    Dore U., P.F. Loverre and L. Ludovici. 2016. Measurement of the Weinberg angle in neutrino interactions.Eur. Phys. J. H41(2):137 Google Scholar
  70. 70.
    Dorenbosch J. et al. 1988. Prompt neutrino production in 400 GeV proton-copper interactions.Z. Phys. C40: 497 ADSGoogle Scholar
  71. 71.
    Dorenbosch J. et al. 1989. Experimental results on neutrino-electron scattering.Z. Phys. C41: 567 Google Scholar
  72. 72.
    Drexlin G. 2003. Final neutrino oscillation results from LSND and Karmen.Nucl. Phys. Proc. Suppl. 118: 146 ADSGoogle Scholar
  73. 73.
    Duffy M.E. et al. 1988. Neutrino production by 400-GeV/c protons in a beam-dump experiment.Phys. Rev. D38: 2032 ADSGoogle Scholar
  74. 74.
    Dydak F. et al. 1984. A search for νμ oscillations in the Δm2 range 0.3–90 eV2.Phys. Lett. B134: 281 ADSGoogle Scholar
  75. 75.
    Eichten T. et al. 1973. Measurement of the neutrino-nucleon and antineutrino-nucleon total cross sections.Phys. Lett. B46: 274–80 ADSGoogle Scholar
  76. 76.
    Ellis J., J.L. Lopez and D.V. Nanopoulos. 1992. The prospect for CHORUS and NOMAD in the light of COBE and GALLEX.Phys. Lett. B292: 189 ADSGoogle Scholar
  77. 77.
    Eskut E. et al. (Chorus Collaboration) 2007. Final results on νμντ oscillation from the CHORUS experiment.Nucl. Phys. B793: 326 ADSGoogle Scholar
  78. 78.
    Fermi E. 1933. Attempt of a theory of emission of beta rays (in italian).Ric. Scient. 4(2): 491 Google Scholar
  79. 79.
    Frampton P.H. and P. Vogel 1982. Massive Neutrinos.Phys. Rept. 82: 339 ADSGoogle Scholar
  80. 80.
    Fritze P. et al. 1980. Further study of the prompt neutrino flux from 400 GeV proton-nucleus collisions using BEBC.Phys. Lett. B96: 427 ADSGoogle Scholar
  81. 81.
    Fukuda Y. et al. (Super-Kamiokande Collaboration) 1998. Evidence for oscillation of atmospheric neutrinos.Phys. Rev. Lett. 81: 1562 ADSGoogle Scholar
  82. 82.
    Gaillard J.M. 1963. The Brookhaven neutrino experiment.The 1963 NPA seminars - The neutrino experiment ed. by C. Franzinetti. DOI: https://doi.org/10.5170/CERN-1963-037.33
  83. 83.
    Gell-Mann M. 1964. A Schematic Model of Baryons and Mesons.Phys. Lett. 8: 214 ADSGoogle Scholar
  84. 84.
    Giesch M. et al. 1963. Status of magnetic horn and neutrino beam.Nucl. Instrum. Meth. 20: 58 ADSGoogle Scholar
  85. 85.
    Glashow S.L. 1961. Partial Symmetries of Weak Interactions.Nucl. Phys. 22: 579 Google Scholar
  86. 86.
    Goldhaber M., L. Grodzins and A.W. Sunyar. 1958. Helicity of neutrinos.Phys. Rev. 109: 1015 ADSGoogle Scholar
  87. 87.
    Gross D.J. and F. Wilczek 1973. Ultraviolet Behavior of Nonabelian Gauge Theories.Phys. Rev. Lett. 30: 1343 ADSGoogle Scholar
  88. 88.
    Gschwendtner E. et al. 2013. CNGS, CERN Neutrinos to Gran Sasso, five years of running a 500 kilowatt neutrino beam facility at CERN.Conf. Proc.: C130512 MOPEA058, CERN-ACC-2013-0266 Google Scholar
  89. 89.
    Haidt D. 2015. The discovery of weak neutral currents.Adv. Ser. Direct. High Energy Phys. 23: 165–83 ADSGoogle Scholar
  90. 90.
    Hand L.N. et al. 1969. A study of 40–90 GeV neutrino interactions using a tagged neutrino beam. Proceedings. Second NAL Summer June 9–August 3, 1969C690609: 37 Google Scholar
  91. 91.
    Harari H. 1989. Light Neutrinos as Cosmological Dark Matter: A CrucialExperimental Test.Phys. Lett. B216: 413 ADSGoogle Scholar
  92. 92.
    Hasert F.J. et al. 1973. Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment.Phys. Lett. B46: 138 ADSGoogle Scholar
  93. 93.
    Hasert F.J. et al. 1973. Search for elastic muon-neutrino electron scattering.Phys. Lett. B46: 121 ADSGoogle Scholar
  94. 94.
    Hirata K.S. et al. (Kamiokande II Collaboration) 1988. Experimental study of the atmospheric neutrino flux.Phys. Lett. B205: 416 ADSGoogle Scholar
  95. 95.
    Hirata K.S. et al. (Kamiokande II Collaboration) 1990. Results from one thousand days of real time directional solar neutrino data.Phys. Rev. Lett. 65: 1297 ADSGoogle Scholar
  96. 96.
    Igarashi S. 2016. Recent progress of J-PARC MR beam commissioning and operation.Conference ProceedingsC16-07-03.2: MOAM6P60 Google Scholar
  97. 97.
    Jonker M. et al. 1980. Experimental study of prompt neutrino production in 400 GeV proton-nucleus collisions.Phys. Lett. B96: 435 ADSGoogle Scholar
  98. 98.
    Jonker M. 1983. Experimental study of x-distributions in semileptonic neutral-current neutrino reactions.Phys. Lett. B128: 117 ADSGoogle Scholar
  99. 99.
    Kleinknecht K. 1978. High energy neutrino reactions.Lecture for the 1978 CERN School of Physics - CERN Yellow Report78-10: 43 Google Scholar
  100. 100.
    Kodama K. et al. (DONUT Collaboration) 2001. Observation of tau neutrino interactions.Phys. Lett. B504: 218 ADSGoogle Scholar
  101. 101.
    Kopp S. 2007. Accelerator-based neutrino beams.Phys. Rep. 439: 101 ADSGoogle Scholar
  102. 102.
    Kudenko Y. 2009. The near neutrino detector for the T2K experiment.Nucl. Instrum. Meth. A598: 289 ADSGoogle Scholar
  103. 103.
    Kuiper B. and G. Plass 1959. On the fast extraction of particles from a 25 GeV proton synchrotron.CERN59-30 Google Scholar
  104. 104.
    Kuiper B. and G. Plass 1965. Operational experience with the CPS Fast Ejection System.Conference ProceedingsC65-09-09: 579 Google Scholar
  105. 105.
    Lee T.D. 1960. Intermediate boson hypothesis of weak interactions.Conference ProceedingsC60-08-25: 567 Google Scholar
  106. 106.
    Lee T.D. and C.N. Yang 1960. Theoretical discussions on possible high-energy neutrino experiments.Phys. Rev. Lett. 4: 307 ADSGoogle Scholar
  107. 107.
    Limon P. 1974. A sign-selected dichromatic neutrino beam.Nucl. Instrum. Meth. 116: 317 ADSGoogle Scholar
  108. 108.
    Long K.R. 2018. Neutrinos from stored muons.Conference ProceedingsC17-04-03.1 Google Scholar
  109. 109.
    Longhin A., L. Ludovici and F. Terranova. 2015. A novel technique for the measurement of the electron neutrino cross-section.Eur. Phys. J. C75: 155 ADSGoogle Scholar
  110. 110.
    Ludovici L. and P. Zucchelli. 1996. Conceptual study of an “anti-tagged” experiment searching for νμνe oscillation. CERN-PPE 96–181 hep-ex 9701007 Google Scholar
  111. 111.
    Maki Z., M. Nakagawa and S. Sakata. 1962. Remarks on the unified model of elementary particles.Prog. Theor. Phys. 28: 870 zbMATHADSGoogle Scholar
  112. 112.
    Mann A.K. and H. Primakoff. 1977. Neutrino oscillations and the number of neutrino types.Phys. Rev. D15: 655 ADSGoogle Scholar
  113. 113.
    McFarland K.S. et al. NuTeV Collaboration 1998. Measurement of sin2θ W from neutrino nucleon scattering at NuTeV.Rencontres de Moriond 1998 Conference ProceedingsC98-03-14: 19 Google Scholar
  114. 114.
    Mezzetto M. 2011. Future neutrino long baseline experiments.Phys. Part. Nucl. 42: 667 Google Scholar
  115. 115.
    Mezzetto M. 2003. Physics reach of the beta beam.J. Phys. G29: 1771 ADSGoogle Scholar
  116. 116.
    Mück H.J. et al. 1972. Pionization in pp interactions at 12 and 24 GeV∕c.Phys. Lett. B39: 303 ADSGoogle Scholar
  117. 117.
    Naples D. et al. (NuTeV collaboration) 2003. High energy neutrino scattering results from NuTeV.Nucl. Phys. Proc. Suppl. 118: 164 ADSGoogle Scholar
  118. 118.
    Neuffer D. 1980. Design considerations for a muon storage ring.Conference ProceedingsC80-10-02: 199 Google Scholar
  119. 119.
    Neuffer D. 1981. Design of Muon Storage Rings for neutrino oscillations experiments.IEEETrans. Nucl. Sci. 28: 2034 ADSGoogle Scholar
  120. 120.
    Orkin-Lecourtois A. et al. 1965. Fluxes of neutrinos and antineutrinos produced at CERN.Informal Conference on Experimental Neutrino Physics, ed. by C. Franzinetti. DOI: https://doi.org/10.5170/CERN-1965-032.111
  121. 121.
    Paley J.M. et al. (MIPP Collaboration) 2014. Measurement of charged pion production yields off the NuMI Target.Phys. Rev. D90: 032001 ADSGoogle Scholar
  122. 122.
    Pauli W. 1930. Dear radioactive ladies and gentlemen (in german). Letter reproduced inPhys. Today31N9: 27 Google Scholar
  123. 123.
    Perkins D. 2013. An early neutrino experiment: how we missed quark substructure in 1963.Eur. Phys. J. H38: 713 Google Scholar
  124. 124.
    Politzer H.D. 1973. Reliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.30: 1346 ADSGoogle Scholar
  125. 125.
    Pontecorvo B. 1957. Mesonium and antimesonium.Zh. Eksp. Teor. Fiz. Theor. 33: 549 and (1958) Sov. Phys. JETP6: 429 Google Scholar
  126. 126.
    Pontecorvo B. 1958. Inverse beta processes and nonconservation of lepton chargeZh. Eksp. Teor. Fiz. Theor. 34: 247 and (1958) Sov. Phys. JETP 7: 172 Google Scholar
  127. 127.
    Pontecorvo B. 1959. Electron and muon neutrinos.Zh. Eksp. Teor. Fiz. Theor. 37: 1751 and Sov. Phys. JETP10: 1236 Google Scholar
  128. 128.
    Pontecorvo B. 1979. Tagging direct neutrinos. A first step to neutrino tagging.Lett. Nuovo Cim. 25: 257 Google Scholar
  129. 129.
    Ramm C.A. 1963. Some considerations on neutrino facilities with large accelerators.CERN-NPA-Int-63-16 and 4th International Conference on High-Energy Accelerators, DubnaC63-08-21 Google Scholar
  130. 130.
    Ramm C.A. 1963. The CERN neutrino beam.CERN NPA/Int. 63-18 and Conference ProceedingsC63-09-09: 91 Google Scholar
  131. 131.
    Ravn H. and B. Alardyce. 1989. On-line mass separators, treatise on heavy ions science. Edited by D. Bromley ( Plenum Press, New York) Google Scholar
  132. 132.
    Richter B. 2000. Conventional beams or neutrino factories: the next generation of accelerator based neutrino experiments.SLAC-PUB-8587 hep-ph/0008222 Google Scholar
  133. 133.
    Salam A. 1968. Weak and Electromagnetic Interactions.Conf. Proc. C680519 Elementary Particle Theory. Ed. N. Svartholm: 367 Google Scholar
  134. 134.
    Schwartz M. 1960. Feasibility of using high energy neutrino to study weak interactions.Phys. Rev. Lett. 4: 306 ADSGoogle Scholar
  135. 135.
    Schwartz M. 1988. Nobel Lecture: The first high energy neutrino experiment.Nobelprize.org. Nobel Media AB 2014. Web. 1 Mar 2018. http://www.nobelprize.org/nobel_prizes/physics/laureates/1988/schwartzlecture.html
  136. 136.
    Steinberger J. 1988. Nobel Lecture: Experiments with High-Energy Neutrino Beams.Nobelprize.org. Nobel Media AB 2014. Web. 10 Mar 2018. http://www.nobelprize.org/nobel_prizes/physics/laureates/1988/steinbergerlecture.html
  137. 137.
    Stockdale I.E. et al. (CCFR Collaboration) 1984. Limits on muon neutrino oscillations in the mass range 30 < Δm2 < 1000 eV2∕c4.Phys. Rev. Lett. 52: 1384 ADSGoogle Scholar
  138. 138.
    t’Hooft G. 1971. Renormalizable Lagrangians for Massive Yang-Mills Fields.Nucl. Phys. B35: 167 ADSGoogle Scholar
  139. 139.
    Ushida N. et al. 1986. Limits to ν μ , ν eν τ oscillations and ν μ, ν eτ direct coupling.Phys. Rev. Lett. 57: 2897 ADSGoogle Scholar
  140. 140.
    van der Meer S. 1961. A directive device for charged particles and its use in an enhanced neutrino beam. DOI: https://doi.org/10.5170/CERN-1961-007
  141. 141.
    Veltman M. 2003. Facts and Mysteries in Elementary Particle Physics.World Scientific Google Scholar
  142. 142.
    Vogel H.F. et al. 1965. Construction and operation of the Argonne pion focusing horn.HEACC 65 Conference ProceedingsC65-09-09: 501 Google Scholar
  143. 143.
    Volpe C. 2004. What about a beta beam facility for low-energy neutrinos?J. Phys. G30: L1 ADSGoogle Scholar
  144. 144.
    Wachsmuth H.W. 1969 The neutrino spectrum for the CERN 1967 neutrino beam (in NEUTRINO MEETING CERN 1969)CERN Report69-28: 33 Google Scholar
  145. 145.
    Weinberg S. 1967. A Model of Leptons.Phys. Rev. Lett. 19: 1264 ADSGoogle Scholar
  146. 146.
    Winter K. (Editor) 1991. Neutrino physics. Cambridge monographs – Cambridge University Press 1991 Google Scholar
  147. 147.
    Yu J. et al. (NuTeV Collaboration) 1998. NuTeV SSQT performance.FERMILAB-TM-2040 Google Scholar
  148. 148.
    Zucchelli P. 2002. A novel concept for a /νe neutrino factory: the beta-beam.Phys. Lett. B532: 166 ADSGoogle Scholar
  149. 149.
    Zweig G. 1964. An SU(3) model for strong interaction symmetry and its breaking.CERN-TH-401 Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di Roma SapienzaRomeItaly
  2. 2.INFN, Sezione di Roma SapienzaRomeItaly

Personalised recommendations