Advertisement

History of accelerator neutrino beams

  • Ubaldo Dore
  • Pier Loverre
  • Lucio LudoviciEmail author
Article
  • 6 Downloads

Abstract

Neutrino beams obtained from proton accelerators were first operated in 1962. Since then, neutrino beams have been intensively used in particle physics and evolved in many different ways. We describe the characteristics of various neutrino beams, relating them to the historical development of the physics studies and discoveries. We also discuss some of the ideas still under consideration for future neutrino beams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott T. et al. (E-802 Collaboration) 1992. Measurement of particle production in proton induced reactions at 14.6 GeV∕mathrmc. Phys. Rev. D 45: 3906 ADSCrossRefGoogle Scholar
  2. 2.
    Abdurashitov J.N. et al. (SAGE Collaboration) 1994. Results from SAGE. Phys. Lett. B 328: 234 ADSCrossRefGoogle Scholar
  3. 3.
    Abe K. et al. (T2K Collaboration) 2011. The T2K experiment. Nucl. Instrum. Meth. A 659: 106 ADSCrossRefGoogle Scholar
  4. 4.
    Abe K. et al. (Hyper-Kamiokande Collaboration) 2015. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande. Nucl. Instrum. Meth. A 659: 106 ADSCrossRefGoogle Scholar
  5. 5.
    Abgrall N. et al. (NA61/SHINE Collaboration) 2018. Measurements of πpm, K± and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV∕c protons with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys. J. C 79: 100 CrossRefGoogle Scholar
  6. 6.
    Abramowicz H. et al. 1982. Prompt neutrino production in a proton beam-dump experiment. Z. Phys. C 13: 179–89 ADSCrossRefGoogle Scholar
  7. 7.
    Acciarri R. et al. (DUNE Collaboration) 2015. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). FERMILAB-DESIGN-2016-02 arXiv:1512.06148
  8. 8.
    Adamson P. et al. 2015. The NuMI Neutrino Beam. Nucl. Instrum. Meth. A 806 279 ADSCrossRefGoogle Scholar
  9. 9.
    Adey D. et al. 2013. nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC. FERMILAB-PROPOSAL 1028. arXiv:1308.6822
  10. 10.
    Agafonova N. et al. (OPERA Collaboration) 2010. Observation of a first Pnutau candidate in the OPERA experiment in the CNGS beam. Phys. Lett. B 691: 138 ADSCrossRefGoogle Scholar
  11. 11.
    Agafonova N. et al. (OPERA Collaboration) 2018. Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam. Phys. Rev. Lett. 120: 211801. [Erratum: Phys. Rev. Lett. 121: 139901] ADSCrossRefGoogle Scholar
  12. 12.
    Ahmad Q.R. et al. (SNO Collaboration) 2002. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89: 011301 ADSCrossRefGoogle Scholar
  13. 13.
    Ahn M.H. et al. (K2K Collaboration) 2003. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 90: 041801 ADSCrossRefGoogle Scholar
  14. 14.
    Ahn M.H. et al. (K2K Collaboration) 2006. Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74: 072003 ADSCrossRefGoogle Scholar
  15. 15.
    Ahrens L.A. et al. 1990. Determination of electroweak parameters from the elastic scattering of muon neutrinos and antineutrinos on electrons. Phys. Rev. D 41: 3297 ADSCrossRefGoogle Scholar
  16. 16.
    Akimov D. 2017. Observation of coherent elastic neutrino-nucleus scattering. Science 357 6356: 1123 ADSCrossRefGoogle Scholar
  17. 17.
    Allaby J.V. et al. 1970. High-energy particle spectra from proton interactions at 19.2 GeV∕c. DOI: 10.5170/CERN-1970-012
  18. 18.
    Amrosini G. et al. (NA56/SPY Collaboration) 1999. Measurement of charged particle production from 450 GeV∕c protons on beryllium. Eur. Phys. J. C 10: 605 ADSCrossRefGoogle Scholar
  19. 19.
    Anelli M. et al. (Ship Collaboration) 2015. A facility to Search for Hidden Particles (SHiP) at the CERN SPS. arXiv:1504.04956
  20. 20.
    Anselmann P. et al. (GALLEX Collaboration) 1992. Neutrinos observed by GALLEX at Gran Sasso. Phys. Lett. B 285: 376 ADSCrossRefGoogle Scholar
  21. 21.
    Antonello M. et al. (MicroBooNE, LAr1-ND and ICARUS-WA104 Collaborations) 2015. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv:1503.01520
  22. 22.
    Armbruster B. et al. (KARMEN Collaboration) 1998. Measurement of the weak neutral current excitation.   12C(νμ ν′μ)12C*(1+, 1; 15.1 MeV) at E ν = 29.8 MeV. Phys. Lett B 423: 15 ADSCrossRefGoogle Scholar
  23. 23.
    Asratyan A.E. et al. 1978. Search for prompt neutrinos in 70 GeV pN collisions. Phys. Lett. B 79: 497 ADSCrossRefGoogle Scholar
  24. 24.
    Astier P. et al. 1990. A search for neutrino oscillation. Nucl. Phys. B 335: 517 ADSCrossRefGoogle Scholar
  25. 25.
    Atherton H.W. et al. 1980. Precise measurements of particle production by 400 GeV∕c protonson beryllium targets. DOI: 10.5170/CERN-1980-007
  26. 26.
    Auerbach L.B. et al. 2001. Measurement of charged-current reactions of νe on 12 C. Phys. Rev. C 64: 065501 ADSCrossRefGoogle Scholar
  27. 27.
    Ayres D.S. et al. 2007. The NOνA Technical Design Report. FERMILAB-DESIGN-2007-1. DOI: 10.2172/935497
  28. 28.
    Astier P. et al. (NOMAD Collaboration) 2001. Final NOMAD results on νμ ντ and νe → ντ oscillations including a new search for ντ appearance using hadronic τ decays. Nucl. Phys. B 611: 3 ADSCrossRefGoogle Scholar
  29. 29.
    Aubert B. et al. 1974. Measurement of rates for muonless deep inelastic neutrino and antineutrino interactions. Phys. Rev. Lett. 32: 1457 ADSCrossRefGoogle Scholar
  30. 30.
    Baker W.F. et al. 1974. Measurement of π± , K±, p, and p− production by 200 and 300 GeV∕c protons. Phys. Lett. B 51: 303 ADSCrossRefGoogle Scholar
  31. 31.
    Baldy R. et al. 1999. The CERN Neutrino beam to Gran Sasso (NGS). CERN-SL 99-34-DI Google Scholar
  32. 32.
    Barish B.C. et al. 1975. Neutral currents in high-energy neutrino collisions: an experimental search. Phys. Rev. Lett. 34: 538 ADSCrossRefGoogle Scholar
  33. 33.
    Barish S.J. et al. 1974. Observation of single-pion production by a weak neutral current. Phys. Rev. Lett. 33: 448 ADSCrossRefGoogle Scholar
  34. 34.
    Beavis D. et al. 1995. Long Baseline Neutrino Oscillation Experiment, E889, Physics Design Report. April 1995 BNL-52459 Google Scholar
  35. 35.
    Benvenuti A.C. et al. 1975. Observation of New-Particle production by high-energy neutrinos and antineutrinos. Phys. Rev. Lett. 34: 419 ADSCrossRefGoogle Scholar
  36. 36.
    Berge P. et al. 1987. Total neutrino and antineutrino charged current cross section measurements in 100, 160, and 200 GeV narrow band beams. Z. Phys. C 35: 443 ADSCrossRefGoogle Scholar
  37. 37.
    Berge P. et al. 1992. Prompt neutrino results from a proton beam dump experiment. Z. Phys. C 56: 175–180 ADSCrossRefGoogle Scholar
  38. 38.
    Bergsma F. et al. 1984. A search for oscillations of muon neutrinos in an experiment with L/E ≅ 0.7 km/GeV. Phys. Lett. B 142: 103 ADSCrossRefGoogle Scholar
  39. 39.
    Bernardini G. 1964. Neutrino physics experimental. Conference Proceedings C64-08-05: 37 Google Scholar
  40. 40.
    Bernardini G. et al. 1964. Search for intermediate boson production in high-energy neutrino interactions. Phys. Lett. 13: 86 ADSCrossRefGoogle Scholar
  41. 41.
    Bernardi G. et al. 1986. Anomalous electron production observed in the CERN PS neutrino beam. Phys. Lett. B 181: 173 ADSCrossRefGoogle Scholar
  42. 42.
    Bernstein R.H. et al. 1988. A proposal for a neutrino oscillation experiment in a tagged neutrino line. FERMILAB-PROPOSAL-0788 Google Scholar
  43. 43.
    Bienlein J.K. et al. 1964. Spark chamber study of high-energy neutrino interactions. Phys. Lett. 13: 80 ADSCrossRefGoogle Scholar
  44. 44.
    Bilenky S.M. 1992. Lepton mixing. In Winter, K. (ed.). Neutrino physics: 177–195 Google Scholar
  45. 45.
    Bjorken J.D. 1968. Asymptotic Sum Rules at Infinite Momentum. Phys. Rev. 179: 1547 ADSCrossRefGoogle Scholar
  46. 46.
    Block M.M. et al. 1964. Neutrino interactions in the CERN heavy liquid bubble chamber. Phys. Rev. Lett. 12: 262 ADSCrossRefGoogle Scholar
  47. 47.
    Blondel A. 2005. Physics at a Neutrino Factory Complex. Nucl. Phys. B (Proc. Suppl.) 143: 282 ADSCrossRefGoogle Scholar
  48. 48.
    Bloom E.D. et al. 1969. High-Energy Inelastic e-p Scattering at 6° and 10°. Phys. Rev. Lett. 23: 930 ADSCrossRefGoogle Scholar
  49. 49.
    Blumlein J. et al. 1992. Investigation of prompt electron-neutrino production in a proton beam dump experiment with the IHEP-JINR neutrino detector. Phys. Lett. B 279: 405 ADSCrossRefGoogle Scholar
  50. 50.
    Bogert D. et al. 1985. Determination of the Nucleon Structure by Means of the Weak Neutral Current. Phys. Rev. Lett. 55: 574 ADSCrossRefGoogle Scholar
  51. 51.
    Breidenbach M. et al. 1969. Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 23: 935 ADSCrossRefGoogle Scholar
  52. 52.
    Burguet-Castell J. et al. 2004. Neutrino oscillation physics with a higher gamma beta beam. Nucl. Phys. B 695: 217 ADSCrossRefGoogle Scholar
  53. 53.
    Burns R. et al. 1965. Determination of the neutrino flux. Presented by L. Lederman at the Informal conference on experimental neutrino physics 1965. Proceedings CERN 65-32: 97 Google Scholar
  54. 54.
    Cao J. et al. 2017. Roadmap for the international accelerator-based neutrino programme. FERMILAB-FN 1031. arXiv:1704.08181
  55. 55.
    Carey D.C., R.J. Stefanski and L.C. Teng 1971. Wide band neutrino beams with quadrupole focusing. IEEE Trans. Nucl. Sci. 18: 755 ADSCrossRefGoogle Scholar
  56. 56.
    Catanesi M.G. et al. (HARP Collaboration) 2007. The HARP detector at the CERN PS. Nucl. Instrum. Meth. A 571: 527 ADSCrossRefGoogle Scholar
  57. 57.
    Cazzoli E.G. et al. 1975. Evidence for ΔS = − ΔQ currents or Charmed-Baryon production by neutrinos. Phys. Rev. Lett. 34: 1125 ADSCrossRefGoogle Scholar
  58. 58.
    Chen H.H. 1982. Neutrino Oscillation Experiments at Accelerators. Prog. Phys. 6: 206–21 Google Scholar
  59. 59.
    Cho Y. et al. 1971. Pion production in proton-beryllium collisions at 12.4 GeV∕c. Phys. Rev. D 4: 1967 ADSCrossRefGoogle Scholar
  60. 60.
    Cline D. and D. Neuffer 1980. A muon storage ring for neutrino oscillations experiments. AIP Conference Proceedings 68: 856 ADSGoogle Scholar
  61. 61.
    Conrad J.M., M.H. Shaevitz, and T. Bolton 1998. Precision measurements with high-energy neutrino beams. Rev. Mod. Phys. 70: 1341 ADSCrossRefGoogle Scholar
  62. 62.
    Cowan C.L. et al. 1956. Detection of the Free Neutrino: a Confirmation. Science 124: 103 ADSCrossRefGoogle Scholar
  63. 63.
    Danby G. et al. 1962. Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys. Rev. Lett. 9: 36 ADSCrossRefGoogle Scholar
  64. 64.
    Davis R. Jr., D.S. Harmer, and K.C. Hoffman. 1968. Search for neutrinos from the sun. Phys. Rev. Lett. 20: 1205 ADSCrossRefGoogle Scholar
  65. 65.
    De Rujula A. and R. Ruckl 1984. Neutrino and muon physics in the collider mode of future accelerators. CERN-TH 3892/84 Google Scholar
  66. 66.
    De Rujula A., E. Fernandez and J.J. Gomez-Cadenas 1993. Neutrino fluxes at future hadron colliders. Nucl. Phys. B 405: 80 ADSCrossRefGoogle Scholar
  67. 67.
    Derwent P. 2012. Accelerators for intensity frontier research. Conference Proceedings C1205201: 4185 Google Scholar
  68. 68.
    Diemoz M.F. Ferroni and E. Longo 1986. Nucleon structure functions from neutrino scattering. Phys. Rep. 130: 293–380 ADSCrossRefGoogle Scholar
  69. 69.
    Dore U., P.F. Loverre and L. Ludovici. 2016. Measurement of the Weinberg angle in neutrino interactions. Eur. Phys. J. H 41 (2):137 CrossRefGoogle Scholar
  70. 70.
    Dorenbosch J. et al. 1988. Prompt neutrino production in 400 GeV proton-copper interactions. Z. Phys. C 40: 497 ADSCrossRefGoogle Scholar
  71. 71.
    Dorenbosch J. et al. 1989. Experimental results on neutrino-electron scattering. Z. Phys. C 41: 567 CrossRefGoogle Scholar
  72. 72.
    Drexlin G. 2003. Final neutrino oscillation results from LSND and Karmen. Nucl. Phys. Proc. Suppl. 118: 146 ADSCrossRefGoogle Scholar
  73. 73.
    Duffy M.E. et al. 1988. Neutrino production by 400-GeV/c protons in a beam-dump experiment. Phys. Rev. D 38: 2032 ADSCrossRefGoogle Scholar
  74. 74.
    Dydak F. et al. 1984. A search for ν μ oscillations in the Δm2 range 0.3–90 eV2. Phys. Lett. B 134: 281 ADSCrossRefGoogle Scholar
  75. 75.
    Eichten T. et al. 1973. Measurement of the neutrino-nucleon and antineutrino-nucleon total cross sections. Phys. Lett. B 46: 274–80 ADSCrossRefGoogle Scholar
  76. 76.
    Ellis J., J.L. Lopez and D.V. Nanopoulos. 1992. The prospect for CHORUS and NOMAD in the light of COBE and GALLEX. Phys. Lett. B 292: 189 ADSCrossRefGoogle Scholar
  77. 77.
    Eskut E. et al. (Chorus Collaboration) 2007. Final results on νμ ντ oscillation from the CHORUS experiment. Nucl. Phys. B 793: 326 ADSCrossRefGoogle Scholar
  78. 78.
    Fermi E. 1933. Attempt of a theory of emission of beta rays (in italian). Ric. Scient. 4 (2): 491 Google Scholar
  79. 79.
    Frampton P.H. and P. Vogel 1982. Massive Neutrinos. Phys. Rept. 82: 339 ADSCrossRefGoogle Scholar
  80. 80.
    Fritze P. et al. 1980. Further study of the prompt neutrino flux from 400 GeV proton-nucleus collisions using BEBC. Phys. Lett. B 96: 427 ADSCrossRefGoogle Scholar
  81. 81.
    Fukuda Y. et al. (Super-Kamiokande Collaboration) 1998. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81: 1562 ADSCrossRefGoogle Scholar
  82. 82.
    Gaillard J.M. 1963. The Brookhaven neutrino experiment. The 1963 NPA seminars - The neutrino experiment ed. by C. Franzinetti. DOI: 10.5170/CERN-1963-037.33
  83. 83.
    Gell-Mann M. 1964. A Schematic Model of Baryons and Mesons. Phys. Lett. 8: 214 ADSCrossRefGoogle Scholar
  84. 84.
    Giesch M. et al. 1963. Status of magnetic horn and neutrino beam. Nucl. Instrum. Meth. 20: 58 ADSCrossRefGoogle Scholar
  85. 85.
    Glashow S.L. 1961. Partial Symmetries of Weak Interactions. Nucl. Phys. 22: 579 CrossRefGoogle Scholar
  86. 86.
    Goldhaber M., L. Grodzins and A.W. Sunyar. 1958. Helicity of neutrinos. Phys. Rev. 109: 1015 ADSCrossRefGoogle Scholar
  87. 87.
    Gross D.J. and F. Wilczek 1973. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 30: 1343 ADSCrossRefGoogle Scholar
  88. 88.
    Gschwendtner E. et al. 2013. CNGS, CERN Neutrinos to Gran Sasso, five years of running a 500 kilowatt neutrino beam facility at CERN. Conf. Proc.: C130512 MOPEA058, CERN-ACC-2013-0266 Google Scholar
  89. 89.
    Haidt D. 2015. The discovery of weak neutral currents. Adv. Ser. Direct. High Energy Phys. 23: 165–83 ADSCrossRefGoogle Scholar
  90. 90.
    Hand L.N. et al. 1969. A study of 40–90 GeV neutrino interactions using a tagged neutrino beam. Proceedings. Second NAL Summer June 9-August 3, 1969 C690609: 37 Google Scholar
  91. 91.
    Harari H. 1989. Light Neutrinos as Cosmological Dark Matter: A CrucialExperimental Test. Phys. Lett. B 216: 413 ADSCrossRefGoogle Scholar
  92. 92.
    Hasert F.J. et al. 1973. Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment. Phys. Lett. B 46: 138 ADSCrossRefGoogle Scholar
  93. 93.
    Hasert F.J. et al. 1973. Search for elastic muon-neutrino electron scattering. Phys. Lett. B 46: 121 ADSCrossRefGoogle Scholar
  94. 94.
    Hirata K.S. et al. (Kamiokande II Collaboration) 1988. Experimental study of the atmospheric neutrino flux. Phys. Lett. B 205: 416 ADSCrossRefGoogle Scholar
  95. 95.
    Hirata K.S. et al. (Kamiokande II Collaboration) 1990. Results from one thousand days of real time directional solar neutrino data. Phys. Rev. Lett. 65: 1297 ADSCrossRefGoogle Scholar
  96. 96.
    Igarashi S. 2016. Recent progress of J-PARC MR beam commissioning and operation. Conference Proceedings C16-07-03.2: MOAM6P60 Google Scholar
  97. 97.
    Jonker M. et al. 1980. Experimental study of prompt neutrino production in 400 GeV proton-nucleus collisions. Phys. Lett. B 96: 435 ADSCrossRefGoogle Scholar
  98. 98.
    Jonker M. 1983. Experimental study of x-distributions in semileptonic neutral-current neutrino reactions. Phys. Lett. B 128: 117 ADSCrossRefGoogle Scholar
  99. 99.
    Kleinknecht K. 1978. High energy neutrino reactions. Lecture for the 1978 CERN School of Physics - CERN Yellow Report 78-10: 43 Google Scholar
  100. 100.
    Kodama K. et al. (DONUT Collaboration) 2001. Observation of tau neutrino interactions. Phys. Lett. B 504: 218 ADSCrossRefGoogle Scholar
  101. 101.
    Kopp S. 2007. Accelerator-based neutrino beams. Phys. Rep. 439: 101 ADSCrossRefGoogle Scholar
  102. 102.
    Kudenko Y. 2009. The near neutrino detector for the T2K experiment. Nucl. Instrum. Meth. A 598: 289 ADSCrossRefGoogle Scholar
  103. 103.
    Kuiper B. and G. Plass 1959. On the fast extraction of particles from a 25 GeV proton synchrotron. CERN 59-30 Google Scholar
  104. 104.
    Kuiper B. and G. Plass 1965. Operational experience with the CPS Fast Ejection System. Conference Proceedings C65-09-09: 579 Google Scholar
  105. 105.
    Lee T.D. 1960. Intermediate boson hypothesis of weak interactions. Conference Proceedings C60-08-25: 567 Google Scholar
  106. 106.
    Lee T.D. and C.N. Yang 1960. Theoretical discussions on possible high-energy neutrino experiments. Phys. Rev. Lett. 4: 307 ADSCrossRefGoogle Scholar
  107. 107.
    Limon P. 1974. A sign-selected dichromatic neutrino beam. Nucl. Instrum. Meth. 116: 317 ADSCrossRefGoogle Scholar
  108. 108.
    Long K.R. 2018. Neutrinos from stored muons. Conference Proceedings C17-04-03.1 Google Scholar
  109. 109.
    Longhin A., L. Ludovici and F. Terranova. 2015. A novel technique for the measurement of the electron neutrino cross-section. Eur. Phys. J. C 75: 155 ADSCrossRefGoogle Scholar
  110. 110.
    Ludovici L. and P. Zucchelli. 1996. Conceptual study of an “anti-tagged” experiment searching for ν μνe oscillation. CERN-PPE 96-181 hep-ex 9701007 Google Scholar
  111. 111.
    Maki Z., M. Nakagawa and S. Sakata. 1962. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28: 870 ADSzbMATHCrossRefGoogle Scholar
  112. 112.
    Mann A.K. and H. Primakoff. 1977. Neutrino oscillations and the number of neutrino types. Phys. Rev. D 15: 655 ADSCrossRefGoogle Scholar
  113. 113.
    McFarland K.S. et al. NuTeV Collaboration 1998. Measurement of sin2 θW from neutrino nucleon scattering at NuTeV. Rencontres de Moriond 1998 Conference Proceedings C98-03-14: 19 Google Scholar
  114. 114.
    Mezzetto M. 2011. Future neutrino long baseline experiments. Phys. Part. Nucl. 42: 667 CrossRefGoogle Scholar
  115. 115.
    Mezzetto M. 2003. Physics reach of the beta beam. J. Phys. G 29: 1771 ADSCrossRefGoogle Scholar
  116. 116.
    Mück H.J. et al. 1972. Pionization in pp interactions at 12 and 24 GeV∕c. Phys. Lett. B 39: 303 ADSCrossRefGoogle Scholar
  117. 117.
    Naples D. et al. (NuTeV collaboration) 2003. High energy neutrino scattering results from NuTeV. Nucl. Phys. Proc. Suppl. 118: 164 ADSCrossRefGoogle Scholar
  118. 118.
    Neuffer D. 1980. Design considerations for a muon storage ring. Conference Proceedings C80-10-02: 199 Google Scholar
  119. 119.
    Neuffer D. 1981. Design of Muon Storage Rings for neutrino oscillations experiments. IEEE Trans. Nucl. Sci. 28: 2034 ADSCrossRefGoogle Scholar
  120. 120.
    Orkin-Lecourtois A. et al. 1965. Fluxes of neutrinos and antineutrinos produced at CERN. Informal Conference on Experimental Neutrino Physics, ed. by C. Franzinetti. DOI: 10.5170/CERN-1965-032.111
  121. 121.
    Paley J.M. et al. (MIPP Collaboration) 2014. Measurement of charged pion production yields off the NuMI Target. Phys. Rev. D 90: 032001 ADSCrossRefGoogle Scholar
  122. 122.
    Pauli W. 1930. Dear radioactive ladies and gentlemen (in german). Letter reproduced in Phys. Today 31N9: 27 Google Scholar
  123. 123.
    Perkins D. 2013. An early neutrino experiment: how we missed quark substructure in 1963. Eur. Phys. J. H 38: 713 CrossRefGoogle Scholar
  124. 124.
    Politzer H.D. 1973. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 30: 1346 ADSCrossRefGoogle Scholar
  125. 125.
    Pontecorvo B. 1957. Mesonium and antimesonium. Zh. Eksp. Teor. Fiz. Theor. 33: 549 and (1958) Sov. Phys. JETP 6: 429 Google Scholar
  126. 126.
    Pontecorvo B. 1958. Inverse beta processes and nonconservation of lepton charge Zh. Eksp. Teor. Fiz. Theor. 34: 247 and (1958) Sov. Phys. JETP 7: 172 Google Scholar
  127. 127.
    Pontecorvo B. 1959. Electron and muon neutrinos. Zh. Eksp. Teor. Fiz. Theor. 37: 1751 and Sov. Phys. JETP 10: 1236 Google Scholar
  128. 128.
    Pontecorvo B. 1979. Tagging direct neutrinos. A first step to neutrino tagging. Lett. Nuovo Cim. 25: 257 CrossRefGoogle Scholar
  129. 129.
    Ramm C.A. 1963. Some considerations on neutrino facilities with large accelerators. CERN-NPA-Int-63-16 and 4th International Conference on High-Energy Accelerators, Dubna C63-08-21 Google Scholar
  130. 130.
    Ramm C.A. 1963. The CERN neutrino beam. CERN NPA/Int. 63-18 and Conference Proceedings C63-09-09: 91 Google Scholar
  131. 131.
    Ravn H. and B. Alardyce. 1989. On-line mass separators, treatise on heavy ions science. Edited by D. Bromley ( Plenum Press, New York) Google Scholar
  132. 132.
    Richter B. 2000. Conventional beams or neutrino factories: the next generation of accelerator based neutrino experiments. SLAC-PUB-8587 hep-ph/0008222 Google Scholar
  133. 133.
    Salam A. 1968. Weak and Electromagnetic Interactions. Conf. Proc. C680519 Elementary Particle Theory. Ed. N. Svartholm: 367 Google Scholar
  134. 134.
    Schwartz M. 1960. Feasibility of using high energy neutrino to study weak interactions. Phys. Rev. Lett. 4: 306 ADSCrossRefGoogle Scholar
  135. 135.
    Schwartz M. 1988. Nobel Lecture: The first high energy neutrino experiment. Nobelprize.org. Nobel Media AB 2014. Web. 1 Mar 2018. http://www.nobelprize.org/nobel_prizes/physics/laureates/1988/schwartzlecture.html
  136. 136.
    Steinberger J. 1988. Nobel Lecture: Experiments with High-Energy Neutrino Beams. Nobelprize.org. Nobel Media AB 2014. Web. 10 Mar 2018. http://www.nobelprize.org/nobel_prizes/physics/laureates/1988/steinbergerlecture.html
  137. 137.
    Stockdale I.E. et al. (CCFR Collaboration) 1984. Limits on muon neutrino oscillations in the mass range 30 < Δm2 < 1000 eV2∕c4. Phys. Rev. Lett. 52: 1384 ADSCrossRefGoogle Scholar
  138. 138.
    t’Hooft G. 1971. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nucl. Phys. B 35: 167 ADSCrossRefGoogle Scholar
  139. 139.
    Ushida N. et al. 1986. Limits to ν μ , ν eν τ oscillations and ν μ, ν eτ direct coupling. Phys. Rev. Lett. 57: 2897 ADSCrossRefGoogle Scholar
  140. 140.
    van der Meer S. 1961. A directive device for charged particles and its use in an enhanced neutrino beam. DOI: 10.5170/CERN-1961-007
  141. 141.
    Veltman M. 2003. Facts and Mysteries in Elementary Particle Physics. World Scientific Google Scholar
  142. 142.
    Vogel H.F. et al. 1965. Construction and operation of the Argonne pion focusing horn. HEACC 65 Conference Proceedings C65-09-09: 501 Google Scholar
  143. 143.
    Volpe C. 2004. What about a beta beam facility for low-energy neutrinos? J. Phys. G 30: L1 ADSCrossRefGoogle Scholar
  144. 144.
    Wachsmuth H.W. 1969 The neutrino spectrum for the CERN 1967 neutrino beam (in NEUTRINO MEETING CERN 1969) CERN Report 69-28: 33 Google Scholar
  145. 145.
    Weinberg S. 1967. A Model of Leptons. Phys. Rev. Lett. 19: 1264 ADSCrossRefGoogle Scholar
  146. 146.
    Winter K. (Editor) 1991. Neutrino physics. Cambridge monographs – Cambridge University Press 1991 Google Scholar
  147. 147.
    Yu J. et al. (NuTeV Collaboration) 1998. NuTeV SSQT performance. FERMILAB-TM-2040 Google Scholar
  148. 148.
    Zucchelli P. 2002. A novel concept for a /νe neutrino factory: the beta-beam. Phys. Lett. B 532: 166 ADSCrossRefGoogle Scholar
  149. 149.
    Zweig G. 1964. An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401 Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di Roma SapienzaRomeItaly
  2. 2.INFN, Sezione di Roma SapienzaRomeItaly

Personalised recommendations