Advertisement

The European Physical Journal H

, Volume 44, Issue 4–5, pp 391–413 | Cite as

Memories of my early career in relativity physics

  • Andrzej Trautman
  • Donald SalisburyEmail author
Open Access
Oral history interview
  • 70 Downloads

Abstract

This interview is focused on university studies and early career in relativity physics including thesis work under Leopold Infeld dealing with gravitational waves. Trautman’s recollections include the collaboration with Ivor Robinson and relationships with relevant personalities like Felix Pirani, Jerzy Plebanski, Roger Penrose and Peter Bergmann.

Notes

Acknowledgments

Open access funding provided by Max Planck Society.

References

  1. 1.
    H. Bondi, F.A.E. Pirani, and I. Robinson, 1959. Gravitational waves in general relativity. III. Exact plane waves.Proceedings of the Royal Society of London, 251:519–533. MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    A. Einstein and N. Rosen, 1937. On gravitational waves.Journal of the Franklin Institute, 223(1):43–54. MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    R.P. Feynman, 1963. Quantum theory of gravitation.Acta Physica Polonica, 24:697–722. MathSciNetGoogle Scholar
  4. 4.
    J. Goldberg 1955. Gravitational radiation.Physical Review, 99:1873–1883. MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    L. Infeld, 1964. editor,Relativistic Theories of Gravitation: Proceedings of a conference held in Warsaw and Jablonna, July 1962. Pergamon Press. Google Scholar
  6. 6.
    L. Infeld and R. Michalska-Trautman, 1969. Radiation from systems in nearly periodic motion.Annals of Physics, 55:576–586. MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    L. Infeld and R. Michalska-Trautman, 1969. The two-body problem and gravitational radiation.Annals of Physics, 55:561–575. MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    L. Infeld and J. Plebānski, 1960.Motion and Relativity. Pergamon Press. Google Scholar
  9. 9.
    P. Jordan, J. Ehlers, and W. Kundt, 2009. Republication of: Exact solutions of the field equations of the general theory of relativity.General Relativity and Gravitation, 41:2191–2280. MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    P. Jordan, J. Ehlers, and R.K. Sachs, 1961. Beiträge zur Theorie der reinen Gravitationsstrahlung, Strenge Lösungen der Feldgleichungen der Allgemeinen Relativitätstheorie I.Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse Nr 1, pages 1–61. Google Scholar
  11. 11.
    P. Jordan, J. Ehlers, and R.K. Sachs, 1961. Beiträge zur Theorie der reinen Gravitationsstrahlung, Strenge Lösungen der Feldgleichungen der Allgemeinen Relativitätstheorie II.Abhundlungen der Mathematisch-Physikalischen Klasse der Kögniglich Sächsischen Gesellschaft der Wissenschaften, pages 1–62. Google Scholar
  12. 12.
    P. Jordan, J. Ehlers, and R.K. Sachs, 2013. Republication of: Contributions to the theory ofpure gravitational radiation. Exact solutions of the field equations of the general theory of relativity ii.General Relativity and Gravitation, 45:2691–2753. MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    P. Jordan and W. Kundt, 1961. Geometrodynamik im Nullfall. Strenge Lösungen der Feldgleichungen der Allgemeinen Relativitätstheorie III.Abhundlungen der Mathematisch-Physikalischen Klasse der Königlich Sächsischen Gesellschaft der Wissenschaften, pages 1–13, 1961. zbMATHGoogle Scholar
  14. 14.
    P. Jordan and W. Kundt, 2014. Republication of: Geometrodynamics in the null case. Exact solutions of the field equations of the general theory of relativity III.General Relativity and Gravitation, 46:1659–1–1659–14. CrossRefGoogle Scholar
  15. 15.
    R. Penrose and W. Rindler, 1986.Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields. Cambridge University Press. Google Scholar
  16. 16.
    R. Penrose and W. Rindler, 1988.Spinors and Space-time: Volume 2, Spinor and twistor methods in space-time geometry. Cambridge University Press. Google Scholar
  17. 17.
    F.A.E. Pirani, 1957. Invariant formulation of gravitational radiation theory.Physical Review, 105:1089–1099. MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    I. Robinson and A. Trautman, 1962. Some spherical gravitational waves in general relativity.Proceedings of the Royal Society of London, 265:463–473. MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    I. Robinson, 1959. A solution of the Maxwell-Einstein equations.Bulletin de l’Académie Polonaise des Sciences, 7(6):351–352. MathSciNetzbMATHGoogle Scholar
  20. 20.
    I. Robinson and A. Trautman, 1960. Spherical gravitational waves.Physical Review Letters, 4:431–432. CrossRefADSGoogle Scholar
  21. 21.
    D. Salisbury, A contextual analysis of the early work of Andrzej Trautman and Ivor Robinson on equations of motion and gravitational radiation. In preparation. Google Scholar
  22. 22.
    A. Trautman, 1955. On the proofs of “backwards” uniqueness for some non-conservative fields describable by differential equations of the hyperbolic type.Bulletin de l’Académie Polonaise des Sciences, 3(6):307–312. MathSciNetzbMATHGoogle Scholar
  23. 23.
    A. Trautman, 1967. Noether equations and conservation laws.Communications in Mathematical Physics, 6:248–261. MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    A. Trautman, 1970. Fibre bundles associated with space-time.Reports on Mathematical Physics, 1(1):29–62. MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    A. Trautman, 2002. Lectures on general relativity.General Relativity and Gravitation, 34(5):721–762. MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, University of WarsawWarsawPoland
  2. 2.Austin CollegeShermanUSA
  3. 3.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations