Advertisement

The European Physical Journal H

, Volume 44, Issue 4–5, pp 349–369 | Cite as

The magic of Feynman’s QED: from field-less electrodynamics to the Feynman diagrams

  • Olivier DarrigolEmail author
Article

Abstract

For some time, even after the Feynman diagrams and rules were publicly known, the foundations of Feynman’s quantum electrodynamics remained mostly private. Its stupendous efficiency then appeared like magic to most of his competitors. The purpose of this essay is to reveal the hidden contrivances of this magic, in a journey from field-less electrodynamics to the Feynman diagrams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bethe, Hans. 1947. The electromagnetic shift of energy levels.Physical Review, 72: 339–341 ADSCrossRefGoogle Scholar
  2. 2.
    Blum, Alexander. 2017. The state is not abolished, it withers away: How quantum field theory became a theory of scattering.Studies in History and Philosophy of Modern Physics, 60: 46–80 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cahill, Kevin. 2013.Physical mathematics. Cambridge: Cambridge University Press Google Scholar
  4. 4.
    Darrigol, Olivier. 1982.La genèse du concept de champ quantique. Thèse de doctorat, Université de Paris 1-Sorbonne. http://www.sphere.univ-paris-diderot.fr/IMG/pdf/Darrigol_Genese_cropped2.pdf
  5. 5.
    Darrigol, Olivier. 1988. Elements of a scientific biography of Tomonaga Sin-Itiro.Historia Scienciarum, 35: 1–29 MathSciNetGoogle Scholar
  6. 6.
    Darrigol, Olivier. 2009. Stueckelberg’s united field-theory of matter, 1936–39. In Jan Lacki, Henri Ruegg, and Gerar Wanders (eds.),E.C.G. Stueckelberg, an unconventional figure of twentieth century physics. Selected scientific papers with commentaries (Berlin: Springer, 2009) Google Scholar
  7. 7.
    Dirac, Paul. 1933. The Lagrangian in quantum mechanics.Physikalische Zeitschrift der Sowietunion, 3: 64–72 zbMATHGoogle Scholar
  8. 8.
    Dirac, Paul. 1938. Classical theory of radiating electrons.Proceedings of the Royal Society of London, A167: 148–169 ADSzbMATHGoogle Scholar
  9. 9.
    Dyson, Freeman. 1949a. The radiation theories of Tomonaga, Schwinger, and Feynman.Physical Review, 75: 486–502 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dyson, Freeman. 1949b. The S matrix in quantum electrodynamics.Physical Review, 75: 1736–1755 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Eigner, Kai, and Frans van Lunteren. 2011. ‘The shackles of causality’: Physics and philosophy in the Netherlands in the interwarperiod. In Alexei Kojevnikov, Cathryn Carson, and Helmuth Trischler (eds.),Weimar culture and quantum mechanics: Selected papers by Paul Forman and contemporary perspectives on the Forman thesis (Singapore: World Scientific), pp. 375–396 Google Scholar
  12. 12.
    Feynman, Richard. 1942. The principle of least action in quantum mechanics. PhD, Princeton University. Also in Laurie Brown (ed.),Feynman’s thesis: A new approach to quantum theory (Singapore: Word Scientific, 2005) Google Scholar
  13. 13.
    Feynman, Richard. 1948a. Space-time approach to non-relativistic quantum mechanics.Reviews of Modern Physics, 20: 367–387 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Feynman, Richard 1948b A relativistic cut-off for classical electrodynamics.Physical Review, 74: 939–946 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Feynman, Richard. 1948c. Relativistic cut-off for quantum electrodynamics.Physical Review, 74: 1430–1438 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Feynman, Richard. 1949a. The theory of positrons.Physical Review, 76: 749–769 ADSCrossRefGoogle Scholar
  17. 17.
    Feynman, Richard. 1949b. Space-time approach to quantum electrodynamics.Physical Review, 76: 769–789 ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Feynman, Richard. 1950. Mathematical formulation of the quantum theory of electromagnetic interaction.Physical Reveiw, 80: 440–457 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Feynman, Richard. 1951 An operator calculus having application in quantum electrodynamics.Physical Review, 84: 108–128 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Feynman, Richard. 1966. The development of the space-time view of quantum field theory. Nobel lecture, reprinted inPhysics Today, 1966, pp. 31–44 CrossRefGoogle Scholar
  21. 21.
    Feynman, Richard, and John Archibald Wheeler. 1941. Reaction of the absorber as the mechanism of radiation damping.Abstract. Physical Review, 59: 682 Google Scholar
  22. 22.
    Fokker, Adriaan. 1932. Théorie relativitiste de l’interaction de deux particules chargées.Physica, 12: 145–152 zbMATHGoogle Scholar
  23. 23.
    Galison, Peter. 1998. Feynman’s war: Modelling weapons, modelling nature.Studies in History and Philosophy of Modern Physics, 29: 391–434 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Gleick, James. 1992.Genius: The life and science of Richard Feynman. New York: Pantheon Books Google Scholar
  25. 25.
    Heisenberg, Werner. 1938. Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie.Zeitschrift für Physik, 110: 251–266 ADSCrossRefGoogle Scholar
  26. 26.
    Kaiser, David. 2005.Drawing theories apart: The dispersion of Feynman diagrams in postwar physics. Chicago: The University of Chicago Press Google Scholar
  27. 27.
    Lacki, Jan. 2004. The puzzle of canonical transformations in early quantum mechanics.Studies in History and Philosophy of Modern Physics, 35: 317–344 ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Sauer, Tilman. 2008. Remarks on the origins of path integration: Einstein and Feynman. https://arXiv:0801.1654.
  29. 29.
    Schweber, Silvan. 1994.QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press Google Scholar
  30. 30.
    Schwinger, Julian. 1948a. On quantum-electrodynamics and the magnetic moment of the electron.Physical Review, 73: 416–417 ADSCrossRefGoogle Scholar
  31. 31.
    Schwinger, Julian. 1948b. Quantum electrodynamics. Pt. 1: A covariant formulation.Physical Review, 74: 1439–1461 ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Schwinger, Julian. 1949. Quantum electrodynamics. Pt. 2: Vacuum polarization and self-energy. Physical Review, 75: 651–679 zbMATHGoogle Scholar
  33. 33.
    Tomonaga, Sin-itiro. 1946. On a relativistic invariant formulation of the quantum theory of wave fields.Progress in Theoretical Physics, 1: 27–42 ADSCrossRefGoogle Scholar
  34. 34.
    Tomonaga, Sin-itiro. 1948. On infinite reactions in quantum field theory.Physical Review, 74: 224–225 ADSCrossRefGoogle Scholar
  35. 35.
    Wanders, Gérard. 2009. Stueckelberg and the S-Matrix theory. In Jan Lacki, Henri Ruegg, and Gérard Wanders (eds.),E.C.G. Stueckelberg, an unconventional figure of twentieth century physics (Basel: Birkhäuser), 87–100 Google Scholar
  36. 36.
    Wheeler, John Archibald. 1979. Some men and moments in elementary particle research. In Roger Stuewer (ed.),Nuclear physics in retrospect: Proceeding of a symposium on the 1930s. (Minneapolis: University of Minnesota Press), 213–324 Google Scholar
  37. 37.
    Wheeler, John Archibald, and Richard Feynman. 1945. Interaction with the absorber as the mechanism of radiation.Reviews of Modern Physics, 17: 157–181 ADSCrossRefGoogle Scholar
  38. 38.
    Wheeler, John Archibald, and Richard Feynman. 1949. Classical electrodynamics in terms of direct interparticle action.Reviews of Modern Physics, 21: 425–433 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Wüthrich, Adrian. 2010.The genesis of Feynman diagrams. Heidelberg: Springer Google Scholar
  40. 40.
    Wüthrich, Adrian. 2012. Interpreting Feynman diagrams as visual models.Spontaneous Generations: A Journal for the History and Philosophy of Science, 6: 172–181 Google Scholar
  41. 41.
    Wüthrich, Adrian. 2013. Against the impossible picture: Feynman’s heuristics in his search for a divergence-free quantum electrodynamics.Physics and Philosophy. http://hdl.handle.net/2003/29919, Article ID 019
  42. 42.
    Wüthrich, Adrian. 2018. The exigencies of war and the stink of a theoretical problem: Understanding the genesis of Feynman’s quantum electrodynamics as mechanistic modeling at different levels.Perspectives on Science, 26: 501–520 CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR SPHere, CNRSParisFrance

Personalised recommendations