Advertisement

The European Physical Journal H

, Volume 44, Issue 2, pp 137–160 | Cite as

On Ludvig Lorenz and his 1890 treatise on light scattering by spheres

  • Jeppe Revall Frisvad
  • Helge KraghEmail author
Article
  • 22 Downloads

Abstract

This paper offers background and perspective on a little-known memoir by Ludvig Lorenz on light scattering by spheres, which was published in Danish in 1890. It is a companion to an English translation of the memoir appearing separately. Apart from introducing Lorenz and some of his contributions to optics and electrodynamics, the paper focuses on the emergence, content and reception of the 1890 memoir and its role in what is often called the Lorenz-Mie theory. In addition to the historical analysis, the paper illuminates aspects of modern Lorenz-Mie theory and its many applications, with an eye to Lorenz’s original work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abildgaard, O. H. A., Frisvad, J. R., Falster, V., Parker, A., Christensen, N. J., Dahl, A. B., and Larsen, R. 2016. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy. Appl. Opt. 55(14): 3840–3846. ADSGoogle Scholar
  2. 2.
    Aden, A. L. and Kerker, M. 1951. Scattering of electromagnetic waves from two concentric spheres. J. Appl. Phys. 22(10): 1242–1246. ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Arfken, G. B., Weber, H. J., and Harris, F. E. 2013. Mathemaical Methods for Physicists: A Comprehensive Guide, seventh edn. Academic Print/Elsevier, Massachusetts. Google Scholar
  4. 4.
    Barton, J. P., Alexander, D. R., and Schaub, S. A. 1988. Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys. 64(4): 1632–1639. ADSGoogle Scholar
  5. 5.
    Bateman, H. 1915. The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations. Cambridge University Press, Cambridge. Google Scholar
  6. 6.
    Bauer, G. 1826. Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J. Reinen Angew. Math. 56(2): 101–121. MathSciNetGoogle Scholar
  7. 7.
    Belokopytov, G. V. and Vasil’ev, E. N. 2006. Scattering of a plane inhomogeneous electromagnetic wave by a spherical particle. Radiophys. Quant. Electr. 49(1): 65–73. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 1, pp. 72–81, January 2006. ADSGoogle Scholar
  8. 8.
    Born, M. and Wolf, E. 1999. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, seventh (expanded) edn. Cambridge University Press. Google Scholar
  9. 9.
    Box, G. P., Sealey, K. M., and Box, M. A. 1992. Inversion of Mie extinction measurements using analytic eigenfunction theory. J. Atmos. Sci. 49(22): 2074–2081. ADSGoogle Scholar
  10. 10.
    Callet, P. 1996. Pertinent data for modelling pigmented materials in realistic rendering. Comput. Graph. Forum 15(2): 119–127. Google Scholar
  11. 11.
    Castanet, G., Delconte, A., Lemoine, F., Mees, L., and Gréhan, G. 2005. Evaluation of temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence. Exp. Fluids 39(2): 431–440. Google Scholar
  12. 12.
    Chandrasekhar, S. 1950. Radiative Transfer. Oxford University Press, Oxford. Unabridged and slightly revised version published by Dover, New York, 1960. Google Scholar
  13. 13.
    Chew, H., McNulty, P. J., and Kerker, M. 1976. Model for raman and fluorescent scatteringby molecules embedded in small particles. Phys. Rev. A 13(1): 396–404. ADSGoogle Scholar
  14. 14.
    Christiansen, C. 1896. Lorenz, ludvig valentin. In Dansk biografisk Lexikon, edited by C. F. Bricka. Copenhagen, 376–381. Google Scholar
  15. 15.
    Chýlek, P. 1977. Light scattering by small particles in an absorbing medium. J. Opt. Soc. Am. 67(4): 561–563. ADSGoogle Scholar
  16. 16.
    Clebsch, A. 1863. Ueber die Reflexion an einer Kugelfläche. J. Reinen Angew. Math. 61: 195–262. MathSciNetGoogle Scholar
  17. 17.
    Dal Corso, A., Frisvad, J. R., Kjeldsen, T. K., and Bærentzen, J. A. 2016. Interactive appearance prediction for cloudy beverages. In Workshop on Material Appearance Modeling (MAM 2016). The Eurographics Association, 1–4. Google Scholar
  18. 18.
    Darrigol, O. 2010. James MacCullagh’s ether: An optical route to Maxwell’s equations? Eur. Phys. J. H 35(2): 133–172. Google Scholar
  19. 19.
    Darrigol, O. 2012. A History of Optics from Greek Antiquity to the Nineteenth Century. Oxford University Press, Oxford. Google Scholar
  20. 20.
    Debye, P. 1909a. Der Lichtdruck auf Kugeln von beliebigem Material. Ann. Phys. 335(11): 57–136. zbMATHGoogle Scholar
  21. 21.
    Debye, P. 1909b. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index. Math. Ann. 67(4): 535–558. MathSciNetzbMATHGoogle Scholar
  22. 22.
    Dusel, P. W., Kerker, M., and Cooke, D. D. 1979. Distribution of absorption centers within irradiated spheres. J. Opt. Soc. Am. 69(1): 55–59. ADSGoogle Scholar
  23. 23.
    Frisvad, J. R. 2018. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave. J. Opt. Soc. Am. A 35(4): 669–680. ADSGoogle Scholar
  24. 24.
    Frisvad, J. R., Christensen, N. J., and Falster, P. 2007a. The Aristotelian rainbow: From philosophy to computer graphics. In Proceedings of GRAPHITE 2007. ACM, 119–128+311. Google Scholar
  25. 25.
    Frisvad, J. R., Christensen, N. J., and Jensen, H. W. 2007b. Computing the scatteringproperties of participating media using Lorenz-Mie theory. ACM Trans. Graph. 26(3): 60:1–60:10. Google Scholar
  26. 26.
    Frisvad, J. R., Christensen, N. J., and Jensen, H. W. 2012. Predicting the appearance of materials using Lorenz-Mie theory. In The Mie Theory: Basics and Applications, edited by W. Hergert and T. Wriedt. Springer Series in Optical Sciences, Vol. 169. Chap. 4, pp. 101–133. Google Scholar
  27. 27.
    Fry, T. C. 1927. Plane waves of light I. Electromagnetic behavior. J. Opt. Soc. Am. 15(3): 137–161. ADSGoogle Scholar
  28. 28.
    Galejs, J. 1962. Scattering from a conducting sphere embedded in a semi-infinite dissipative medium. J. Res. Natl. Bur. Stand. D. Radio Propag. 66D(5): 607–612. zbMATHGoogle Scholar
  29. 29.
    Gouesbet, G. 2012. From theories by Lorenz and Mie to ontological underdetermination of theories by experiments. In The Mie Theory: Basics and Applications, edited by W. Hergert and T. Wriedt. Springer Series in Optical Sciences, Vol. 169. Chap. 3, pp. 73–100. Google Scholar
  30. 30.
    Gouesbet, G. 2019. Generalized Lorenz-Mie theories and mechanical effects of laser light, on the occasion of Arthur Ashkin’s receipt of the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review. J. Quant. Spectr. Radiat. Transf. 225: 258–277. ADSGoogle Scholar
  31. 31.
    Gouesbet, G. and Gréhan, G. 1982. Sur la généralisation de la théorie de Lorenz-Mie. J. Opt. 13(2): 97–103. ADSGoogle Scholar
  32. 32.
    Gouesbet, G. and Gréhan, G. 2017. Generalized Lorenz-Mie Theories, second edn. Springer, Berlin. Google Scholar
  33. 33.
    Gouesbet, G., Maheu, B., and Gréhan, G. 1988. Light scattering from a sphere arbitrarily located in a Gaussian beam. J. Opt. Soc. Am. A 5(9): 1427–1443. ADSGoogle Scholar
  34. 34.
    Grenfell, T. C. and Warren, S. G. 1999. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104(D24): 31, 697–31, 709. Google Scholar
  35. 35.
    Hansen, J. and Nazarenko, L. 2004. Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA 101(2): 423–428. ADSGoogle Scholar
  36. 36.
    Helmholtz, H. v. 1867. Handbuch der Physiologischen Optik. Leopold Voss, Leipzig. Three volumes published 1856–1866 and published together in Algemeine Encyklopädie der Physik, Vol. 9, 1867. Google Scholar
  37. 37.
    Hergert, W. 2012. Gustav Mie: From electromagnetic scattering to an electromagnetic view of matter. In The Mie Theory: Basics and Applications, edited by W. Hergert and T. Wriedt. Springer Series in Optical Sciences, Vol. 169. Chap. 1, pp. 1–51. Google Scholar
  38. 38.
    Horvath, H. 2009. Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. J. Quant. Spectr. Radiat. Transf. 110(11): 787–799. ADSGoogle Scholar
  39. 39.
    Howell, J. R., Mengüç, M. P., and Siegel, R. 2016. Thermal Radiation Heat Transfer, sixth edn. CRC Press/Taylor & Francis, Boca Raton. Google Scholar
  40. 40.
    Ishimaru, A. 1978. Wave Propagation in Random Media. Academic Press, New York. Reissued by IEEE Press and Oxford University Press, 1997. Google Scholar
  41. 41.
    Ishimaru, A. 2017. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, second edn. John Wiley & Sons, Hoboken. Google Scholar
  42. 42.
    Jackèl, D. and Walter, B. 1997. Modeling and rendering of the atmosphere using Mie-scattering. Comput. Graph. Forum 16(4): 201–210. Google Scholar
  43. 43.
    Jackson, J. D. and Okun, L. B. 2001. Historical roots of gauge invariance. Rev. Mod. Phys. 73(3): 663–680. ADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    Kaiser, W. 1981. Theorien der Elektrodynamik im 19. Jahrhundert. Gerstenberg, Hildesheim. Google Scholar
  45. 45.
    Keller, O. 2002. Optical works of L. V. Lorenz. In Progress in Optics, edited by E. Wolf. Vol. 43. Elsevier, Amsterdam, Chap. 3, pp. 195–294. Google Scholar
  46. 46.
    Kerker, M. 1969. The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York. Google Scholar
  47. 47.
    Kerker, M. 1982. Lorenz-Mie scattering by spheres: some newly recognized phenomena. Aeros. Sci. Technol. 1(3): 275–291. ADSGoogle Scholar
  48. 48.
    Kerker, M. and Cooke, D. D. 1973. Radiation pressure on absorbing spheres and photophoresis. Appl. Opt. 12(7): 1378–1379. ADSGoogle Scholar
  49. 49.
    Kerker, M. and Cooke, D. D. 1982. Photophoretic force on aerosol particles in the free-molecule regime. J. Opt. Soc. Am. 72(9): 1267–1272. ADSGoogle Scholar
  50. 50.
    Killian, J. L., Ye, F., and Wang, M. D. 2018. Optical tweezers: A force to be reckoned with. Cell 175(6): 1445–1448. Google Scholar
  51. 51.
    Kim, I., Lee, K.-S., Lee, T.-S., Jung, D. S., Lee, W.-S., Kim, W. M., and Lee, K.-S. 2015. Size dependence of spherical metal nanoparticles on absorption enhancements of plasmonic organic solar cells. Syn. Metals 199: 174–178. Google Scholar
  52. 52.
    Kirchhoff, G. 1857. Ueber die Bewegung der Elektricität in Drähten. Ann. Phys. Chem. 176(2): 193–217. ADSGoogle Scholar
  53. 53.
    Kragh, H. 2018a. The Lorenz-Lorentz formula: Origin and early history. Substantia 2(2): 7–18. MathSciNetGoogle Scholar
  54. 54.
    Kragh, H. 2018b. Ludvig Lorenz: A Nineteenth-Century Theoretical Physicist. Royal Danish Academy of Sciences and Letters, Copenhagen. Google Scholar
  55. 55.
    Kragh, H. 2018c. Ludvig Lorenz and his non-Maxwellian electrical theory of light. Phys. Perspect. 20(3): 221–253. ADSGoogle Scholar
  56. 56.
    Logan, N. A. 1962. Early history of the Mie solution. J. Opt. Soc. Am. 52(3): 342–343. Google Scholar
  57. 57.
    Logan, N. A. 1965. Survey of some early studies of the scattering of plane waves by a sphere. Proc. IEEE 53(8): 773–785. Google Scholar
  58. 58.
    Lorentz, H. A. 1880. Ueber dieBeziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann. Phys. Chem. 245(4): 641–665. ADSzbMATHGoogle Scholar
  59. 59.
    Lorenz, L. V. 1861. Bestimmung der Schwingungsrichtung des Lichtäthers durch die Reflexion und Brechung des Lichtes. Ann. Phys. Chem. 190(10): 238–250. ADSGoogle Scholar
  60. 60.
    Lorenz, L. V. 1863. Ueber die Theorie des Lichts. Ann. Phys. Chem. 194(1): 111–145. ADSGoogle Scholar
  61. 61.
    Lorenz, L. V. 1867. On the identity of the vibrations of light with electrical currents. Philos. Mag. 34(230): 287–301. Google Scholar
  62. 62.
    Lorenz, L. V. 1869. Experimentale og theoretiske Undersøgelser over Legemers Brydningsforhold. Det kongelige danske Videnskabernes Selskabs Skrifter 5(8): 203–248. Google Scholar
  63. 63.
    Lorenz, L. V. 1877. Die Lehre vom Licht. Teubner, Leipzig. Google Scholar
  64. 64.
    Lorenz, L. V. 1880. Ueber die Refractionsconstante. Ann. Phys. Chem. 247(9): 70–103. ADSzbMATHGoogle Scholar
  65. 65.
    Lorenz, L. V. 1883. Theorie der Dispersion. Ann. Phys. Chem. 256(9): 1–21. ADSzbMATHGoogle Scholar
  66. 66.
    Lorenz, L. V. 1890. Lysbevægelser i og uden for en af plane Lysbølger belyst Kugle. Det kongelige danske Videnskabernes Selskabs Skrifter 6(6): 1–62. Google Scholar
  67. 67.
    Lorenz, L. V. 1898–1904. Oeuvres Scientifiques de L. Lorenz. Vol. 1–2. Lehmann & Stage, Copenhagen. Google Scholar
  68. 68.
    Luan, F., Gu, B., Gomes, A. S. L., Yong, K.-T., Wen, S., and Prasad, P. N. 2015. Lasing in nanocomposite random media. Nano Today 10(2): 168–192. Google Scholar
  69. 69.
    Ma, L. X., Xie, B. W., Wang, C. C., and Liu, L. H. 2019. Radiative transfer in dispersed media: Considering the effect of host medium absorption on particle scattering. J. Quant. Spectr. Radiat. Transf. 230: 24–35. ADSGoogle Scholar
  70. 70.
    Maxwell Garnett, J. C. 1904. Colours in metal glasses and in metallic films. Philos. Trans. 203(359–371): 385–420. ADSzbMATHGoogle Scholar
  71. 71.
    McCartney, E. J. 1976. Optics of the Atmosphere: Scattering by Molecules and Particles. John Wiley & Sons, New York. Google Scholar
  72. 72.
    Mie, G. 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330(3): 377–445. zbMATHGoogle Scholar
  73. 73.
    Mobley, C. D. 1994. Light and Water: Radiative Transfer in Natural Waters. Academic Press, San Diego. Google Scholar
  74. 74.
    Mourant, J. R., Fuselier, T., Boyer, J., Johnson, T. M., and Bigio, I. J. 1997. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt. 36(4): 949–957. ADSGoogle Scholar
  75. 75.
    Mundy, W. C., Roux, J. A., and Smith, A. M. 1974. Mie scattering by spheres in an absorbing medium. J. Opt. Soc. Am. 64(12): 1593–1597. ADSGoogle Scholar
  76. 76.
    Nicholson, J. W. 1910. The asymptotic expansions of Bessel functions. Philos. Mag. 19(110): 228–249. zbMATHGoogle Scholar
  77. 77.
    Pitari, G., Di Genova, G., and De Luca, N. 2015. A modelling study of the impact of on-road diesel emissions on arctic black carbon and solar radiation transfer. Atmosphere 6(3): 318–340. ADSGoogle Scholar
  78. 78.
    Polimeno, P., Magazzù, A., Iatì, M. A., Patti, F., Saija, R., Boschi, C. D. E., Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., and Maragò, O. M. 2018. Optical tweezers and their applications. J. Quant. Spectr. Radiat. Transf. 218: 131–150. ADSGoogle Scholar
  79. 79.
    Postelmans, A., Aernouts, B., and Saeys, W. 2018. Estimation of particle size distributions from bulk scattering spectra: sensitivity to distribution type and spectral noise. Opt. Express 26(12): 15015–15038. ADSGoogle Scholar
  80. 80.
    Poynting, J. H. 1884. On the transfer of energy in the electromagnetic field. Philos. Trans. 175: 343–361. zbMATHGoogle Scholar
  81. 81.
    Prieve, D. C. and Walz, J. Y. 1993. Scattering of an evanescent surface wave by a microscopic dielectric sphere. Appl. Opt. 32(9): 1629–1641. ADSGoogle Scholar
  82. 82.
    Rakovich, Y. P. and Donegan, J. F. 2010. Photonic atoms and molecules. Laser Photonics Rev. 4(2): 179–191. ADSGoogle Scholar
  83. 83.
    Rayleigh, Lord. 1871a. On the light from the sky, its polarization and colours. Philos. Mag. 41(271): 107–120. Google Scholar
  84. 84.
    Rayleigh, Lord. 1871b. On the light from the sky, its polarization and colours. Philos. Mag. 41(273): 274–279. Google Scholar
  85. 85.
    Rayleigh, Lord. 1871c. On the scattering of light by small particles. Philos. Mag. 41(275): 447–454. Google Scholar
  86. 86.
    Rayleigh, Lord. 1881. On the electromagnetic theory of light. Philos. Mag. 12(73): 81–101. Google Scholar
  87. 87.
    Rayleigh, Lord. 1899. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philos. Mag. 47(287): 375–384. zbMATHGoogle Scholar
  88. 88.
    Sadeghi, I., Muñoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., and Jensen, H. W. 2012. Physically-based simulation of rainbows. ACM Trans. Graph. 31(1): 3:1–3:12. Google Scholar
  89. 89.
    Schaub, S. A., Alexander, D. R., Barton, J. P., and Emanuel, M. A. 1989. Focused laser beam interactions with methanol droplets: effects of relative beam diameter. Appl. Opt. 28(9): 1666–1669. ADSGoogle Scholar
  90. 90.
    Schuster, A. 1909. An Introduction to the Theory of Optics. Edward Arnold, London. Google Scholar
  91. 91.
    Stiles, W. S. and Burche, J. M. 1959. N.P.L. colour-matching investigation: Final report (1958). Opt. Acta 6: 1–26. ADSGoogle Scholar
  92. 92.
    Stockman, A. and Sharpe, L. T. 2000. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40(13): 1711–1737. Google Scholar
  93. 93.
    Stratton, J. A. 1941. Electromagn. Theory. McGraw-Hill, New York. Google Scholar
  94. 94.
    Todhunter, I. 1893. A History of the Theory of Elasticity and of the Strength of Materials: From Galilei to the Present Time. Vol. II. Saint-Venant to Lord Kelvin. Cambridge University Press, Cambridge. Google Scholar
  95. 95.
    Tuchin, V. 2015. Tissue Optics: Light Scattering Models and Instruments for Medical Diagnosis, third edn. SPIE Press, Washington. Google Scholar
  96. 96.
    van de Hulst, H. C. 1957. Light Scattering by Small Particles. John Wiley & Sons, New York. Google Scholar
  97. 97.
    Vizgin, V. P. 1994. Unified Field Theories: in the First Third of the 20th Century. Birkhäuser, Basel. Google Scholar
  98. 98.
    Wait, J. R. 1962. Electromagnetic scattering from a radially inhomogeneous sphere. Appl. Sci. Res., Section B 10(5–6): 441–450. zbMATHGoogle Scholar
  99. 99.
    Wait, J. R. 1998. The ancient and modern history of EM ground-wave propagation. IEEE Antennas Propag. Mag. 40(5): 7–24. ADSGoogle Scholar
  100. 100.
    Wang, L. V. and Wu, H. 2007. Biomedical Optics: Principles and Imaging. John Wiley & Sons, Hoboken. Google Scholar
  101. 101.
    Ward, J. and Benson, O. 2011. Wgm microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photon. Rev. 5(4): 553–570. ADSGoogle Scholar
  102. 102.
    Watson, G. N. 1922. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge. Google Scholar
  103. 103.
    Whittaker, E. 1958. A History of the Theories of Aether and Electricity: Vol. I: The Classical Theories, 2nd revised edn. Thomas Nelson, London. Google Scholar
  104. 104.
    Wiscombe, W. J. 1980. Improved Mie scattering algorithms. Appl. Opt. 19(9): 1505–1509. ADSGoogle Scholar
  105. 105.
    Wriedt, T. 2012. Mie theory: A review. In The Mie Theory: Basics and Applications, edited by W. Hergert and T. Wriedt. Springer Series in Optical Sciences, Vol. 169. Chap. 2, pp. 53–71. Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of Denmark, Richard Petersens PladsKongens LyngbyDenmark
  2. 2.Niels Bohr Institute, University of CopenhagenCopenhagenDenmark

Personalised recommendations